Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот, химический потенциал

    Химический потенциал азота [c.148]

    На протяжении всей этой книги постоянно подчеркиваются взаимосвязи между свойствами элементов и их соединений, которые являются неотъемлемой чертой систематики элементов в периодической таблице. Родственные взаимосвязи между элементами, находящимися в одной колонке, служили основой для рассмотрения благородных газов, галогенов, халькогенов, групп азота, углерода и кремния. Закономерности, наблюдающиеся в рядах, подчеркивались при рассмотрении электронной структуры, относительной электроотрицательности и образования химических связей для того чтобы показать, как изменяются те или иные свойства в зависимости от порядкового номера, использовались многочисленные графические изображения. Энергия ионизации (потенциал ионизации), ковалентные, ионные и вандерваальсовы радиусы, термодинамические характеристики (значения энтропии, теплот образования и тепловых эффектов) — вот некоторые свойства, рассмотренные как функция Z. [c.289]


    Пример 9А. Химический потенциал азота [c.142]

    На рис. 9А.2 представлены зависимости теплоемкости при постоянном давлении Ср и отношения Ср Т от температуры. По этим данным можно рассчитать химический потенциал азота в функции давления и температуры. [c.143]

    В другой работе И. Р. Кричевским и Н. Е. Хазановой [12] было теоретически и экспериментально изучено равновесие молекулярного азота и а—азотированного железа при 350— 525° С и давлениях до 3800 атм. В этой работе авторы для расчета равновесия сосуществующих фаз в двойной системе применили так называемый графический метод, основанный на требовании равенства химических потенциалов фаз, находящихся в равновесии. Поскольку химический потенциал компонента в данной фазе можно представить как производную мольной свободной энергии образования этой фазы по мольной доле рассматриваемого компонента, очевидно, что при равновесии кривые, изображающие зависимость мольной свободной энергии образования фазы от мольной доли компонента для различных фаз, должны иметь одну общую касательную. В этом и заключается [c.123]

    В равновесии при давлении 1 атм присутствие углерода не влияет на активность азота (так как химический потенциал азота в расплаве равен его химическому потенциалу в газовой фазе) и, следовательно, [c.228]

    При исследовании многих радиационно-химических реакций, в газовой фазе сделано важное наблюдение, согласно которому присутствие инертного газа часто не оказывает влияния на величину MIN даже если парциальное давление инертного газа. столь велико, что большая часть ионизации должна происходить в нем, а не в реагирующем веществе [6]. Так, на разложение воды и двуокиси углерода и на полимеризацию ацетилена не влияет присутствие азота или ксенона под значительным давлением. Здесь возможны различные объяснения. Линд с сотрудниками считают, что образуются смешанные сольватные оболочки. В тех случаях, когда инертный газ В имеет более высокий потенциал ионизации 1ц, чем потенциал реагирующего вещества А (/а), может происходить перенос заряда к реагенту [7]  [c.54]

    Согласно большинству физических и химических методов, четыре связи в молекуле метана эквивалентны (например, ни ЯМР-, ни ИК-спектр метана не содержит пиков, которые можно было бы отнести к разного вида связям С—Н), однако имеется такой физический метод, который позволяет дифференцировать восемь валентных электронов в молекуле метана. Это метод фотоэлектронной спектроскопии [10]. Суть его состоит в том, что молекулу или свободный атом облучают в вакууме ультрафиолетовым светом, вызывая выброс электрона, энергию которого измеряют. Разность между этой энергией и энергией использованного излучения есть потенциал ионизации вырванного из молекулы электрона. Молекула, содержащая несколько электронов различной энергии, может терять любой электрон, энергия которого ниже, чем энергия использованного излучения (каждая молекула теряет только один электрон, потеря двух электронов одной молекулой практически никогда не имеет места). Фотоэлектронный спектр состоит из серий полос, каждая из которых соответствует орбитали определенной энергии. Таким образом, спектр дает прямую экспериментальную картину всех орбиталей в зависимости от их энергии, при условии что энергия используемого излучения достаточно высока [11]. Широкие полосы в спектре обычно соответствуют сильно связанным электронам, а узкие полосы — слабо связанным или несвязанным электронам. Типичным примером является спектр молекулярного азота, показанный на рис. 1.8 [12]. Электронная структура молекулы N2 показана на рис. 1.9. Две -орбитали атомов азота комбинируются, давая две орбитали — связываю- [c.24]


    Выразим химический потенциал азота через летучесть азота, а химические потенциалы железа и нитрида железа через активности этих веществ  [c.336]

    Результаты расчета конфигурационной части химического потенциала и поправки, учитывающей взаимодействие молекул на больших расстояниях, для различных длин цепей и их сравнение с экспериментальными данными для азота [c.69]

    Более высокая химическая активность криптона, ксенона и района по сравнению с первыми членами группы благородных газов объясняется относительно низкими потенциалами ионизации их атомов (см. табл. 38). Для криптона, ксенона и радона эти величины близки к потенциалам ионизации некоторых других элементов (например, потенциал ионизации атома азота равен 14,53 В, атома хлора — 12,97 В). [c.669]

    Одна из основных задач химии — установить зависимость между строением, энергетическими характеристиками химических связей и реакционной способностью веществ, изучить влияние различных факторов на скорость и механизм химических реакций. О принципиальной осуществимости процесса судят по величине изменения изобарного потенциала системы. Однако величина изменения изобарного потенциала ничего не говорит о реальной возможности протекания реакции в данных конкретных условиях, не дает никакого представления о скорости процесса и ее механизме. Например, реакция взаимодействия оксида азота (И) с кислородом [c.210]

    Совершенно иная ситуация складывается в окислительной обстановке. Высокие значения п/ф указывают на интенсивное окисление ОВ в аэробных условиях. Легко окисляемые ненасыщенные жирные кислоты, а также компоненты белково-углеводного комплекса практически полностью выводятся и не участвуют в процессах нефтеобразования. Процесс сульфатредукции идет очень слабо. Отсутствие ненасыщенных структур резко сокращает возможность образования нафтеновых и ароматических структур. Все вместе это приводит к накоплению ОВ, из которого затем образуются нефти с низким содержанием серы, азота, нафтеновых и ароматических соединений. В этих условиях остаются химически и биохимически инертные компоненты исходного ОВ — насыщенные жирные спирты и кислоты, которые в будущем становятся основным материалом для образования легких парафинистых нефтей. С этих позиций легко объяснить данные табл. 38. В принципе не может быть больших и уникальных запасов нефтей малосернистых и высокопарафинистых. И, наоборот, нефти повышенной плотности, сернистые, служат прямым указанием на высокий генерационный потенциал нефте- [c.136]

    Реакция диспропорционирования радикалов ароматических углеводородов является одним из частных случаев одного из наибо.хее общих законов, управляющих процессами в органической химии. Этот закон может быть сформулирован следующим образом реакции самопроизвольного превращения органических молекул, без участия посторонних соединений, всегда идут в сторону накопления в одной части системы максимально обуглеро-женных молекул или частей молекулы, а в другой — соединений или частей молекулы, обогащенных водородом, кислородом, серой и азотом органическая молекула стремится к состоянию минимального уровня свободной энергии, перестраивая "свою структуру в направлении возникновения группировок атомов, близких к углекислоте, воде, метану, графи. у, сероводороду, aMMHaiiy и другим веществам, т. е. к соединениям с минимальным уровнем термодинамического химического потенциала. [c.111]

    Химический потенциал каждого компонента и, следовательно, его активность в таких растворах определяются не только его концентрацией, но и концентрациями и свойствами всех других растворенных веществ. Это необходимо учитывать при расчетах равновесий. Например, активность серы, растворенной в жидком железе, зависит от содержания в нем углерода, кремния и т. д. Присутствие С и Si увеличивает коэ< х )ициент активности серы и, следовательно, способствует десульфурации стали, присутствие марганца уменьшает активность серы. Протекание процесса выделения (или растворения) карбидных или нитридных фаз при термической обработке стали определяется при данной температуре активностями образующих эти фазы металлов, углерода и азота, которые в свою очередь зависят от концентрации остальных компонентов твердого раствора. Для упрощения описания равновесий в подобных системах К- Вагнером и Д. Чнпманом были введены так называемые параметры взаимодействия. [c.121]

    Таким образом, присутствие углерода и азота в стали способствует Деформационномуупрочнению и тем самым повышает химический потенциал дислокаций и атомов металла, т. е. создает необходимые условия для механохимического растворения. Кроме того, адсорбция атомов углерода и азота на полигональных субграницах в некоторой мере способствует также увеличению химической активности. Этим, в частности, обусловлено некоторое увеличение [97, 98] скорости коррозии металла, прошедшего низкотемпературный отпуск, по сравнению с неотпущенным полигонизация приводит к увелич ению общей протяженности субграниц с сегрегированными на них атомами примеси (процессы диффузии примесей к субграницам облегчаются нагревом), которые повышают химическую активность этих границ. Однако следует иметь в виду, что сегрегация углерода и азота на субгра- [c.115]


    Таким образом, присутствие углерода и азота в стали способствует деформационному упрочнению и тем самым повышает химический потенциал дислокаций и атомов металла, т. е. создает необходимые условия для механохимического растворения. Кроме того, адсорбция атомов углерода и азота на полигональных субграницах в некоторой мере способствует также увеличению химической активности. Этим, в частности, обусловлено некоторое увеличение [105, 106] скорости коррозии металла, прошедшего низкотемпературный отпуск, по сравнению с неотпущенным полигонизация приводит к увеличению общей протяженности субграниц с сегрегированными на них атомами примеси (процессы диффузии примесей к субграницам облегчаются нагревом), которые повышают химическую активность этих границ. Однако следует иметь в виду, что сегрегация углерода и азота на субграницах повышает скорость коррозии в кислых растворах вследствие снижения перенапряжения водорода на выделениях [107], а не вследствие облегчения анодной реакции. Последняя замедляется из-за понижения энергии, связанной с дислокациями, адсорбировавшими примеси старые дислокации травятся труднее, чем свежие . [c.116]

    При таком подходе становится более понятна и роль такой важной при алмазообразовании примеси как азот. Хорошо известен факт влияния азота на степень упорядочения расплавов металлов переходных групп, а также роль азота как отрицательного фактора для процессов диффузии углерода и образования устойчивых карбидов. Неудивительно, что экспериментальные данные по р-Г-параметрам алмазообразования при использовании металлов, обычно называемых катализаторами, дают величины, близкие к расчетной кривой равенства = М- а), химических потенциалов графита и алмаза (в определенном, разумеется, интервале температур и давлении). Однако ситуация изменяется, как только начинают использоваться расплавы, неблагоприятные по растворимости, активности углерода или строению расплава. Формально можно добавить в уравнение для химического потенциала данной фазы дополнительные члены i(gi), описывающие превращение по некоторой внутренней координате г/(. Например, Ар,упр представляет зависимость от параметра, описывающего упругое взаимодействие при заданном пространственном распределении фаз [25], т. е. имеем  [c.316]

    Они указывают, что кислород азотной кислоты, связанный с азотом двумя валентностями, должен иметь гораздо больше свободной химической энергии, чем частично гидрогенизированный кислород гидроксила, а также большее химическое сродство к водороду и поэтому легче может оказать то действие, которое необходимо, чтобы отделить в бензольной молекуле водород от углерода. Доминирую-1ЦИМИ движущими силами в азотной кислоте является химический потенциал кислорода для водорода и химический потенциал азота для арила. С этой точки зрения нитрация бензола протекает следую-1ЦИМ образом  [c.55]

    Алюминий химически активен, легко окисляется кислородом воздуха, образуя прочную поверхностную пленку оксида AI2O3, что обусловливает его высокую коррозионную стойкость. В мелко раздробленном состоянии при нагревании на воздухе воспламеняется и сгорает. Алюминий реагирует с серой и галогенами. При нагревании образует с згглеродом карбид AI4 3 и с азотом нитрид A1N. Как амфотерный металл алюминий растворяется в сильных кислотах и щелочах. Нормальный электродный потенциал алюминия равен 1,66 В при рН<7 и 3,25 В при рН>7. [c.15]

    Однако работа Алмквиста и Блэка показала, что на поверхности железных катализаторов существуют отдельные атомы или участки, обладающие высокой активностью., в термодинамическбм смысле этого слова, с сильно повышенным химическим потенциа- лом так, напри.мер, эти ато.мы способны окисляться уже в присутствии небольших следов водяного пара в азото-водородной смеси (1 3) при таких тем.пературах, при которых атомы железа в обычной железной решетке превращаются в окислы железа, при отношении водяного пара к водороду не ниже 16%. Франкенбургер первый >т<азал на возможность того, что именно эти атомы железа, способные образовывать поверхностные окислы в присутствии следов водяного лара, могут образовывать и поверхностные нитриды уже при давлении азота порядка всегсУ лишь нескольких атмосфер.  [c.158]

    Получены также [11] изотермы адсорбции этилена на графити-рованной при 2800 °С саже при 6 температурах от —60 до —125 °С. Было показано, что абсолютная величина адсорбции а на базисной плоскости графита при —100°С и Ps = 394,0 мм рт. ст. (так же, как и для азота, бензола и н-гексана) зависит только от природы системы адсорбат—адсорбент. При низких значениях pIps изотермы обращены выпуклостью к оси давлений вследствие сильного притяжения при заполнении первого монослоя. При больщих величинах pips характер изотерм изменяется, по-видимому, в связи с заполнением второго слоя. При —125 С появляется петля гистерезиса, обусловленная капиллярной конденсацией в зазорах, образованных полиэдрическими частицами сажи. Петля гистерезиса становится более отчетливой с увеличением поверхностного натяжения 0 и мольного объема жидкости Vm. Площадь, занимаемая молекулой этилена при плотном монослойном покрытии Ыт равна 21,5 А . Дифференциальная теплота адсорбции Qa возрастает с увеличением степени заполнения поверхности 0 до максимума при 0=1, а затем резко падает до величины, равной теплоте конденсации. При 0 = 2 кривая зависимости Qa от 0 проходит через второй, более слабый максимум. Рассчитанные на основании экспериментальных данных кривые зависимости свободной энергии и энтропии адсорбции от заполнения поверхности графитированной сажи носят волнообразный характер. Л5а проходит через минимум, равный —5 э. е. при 0 = 1. При переходе к заполнению второго слоя А5а возрастает и переходит в положительную область, однако при 0 = 2 появляется второй минимум в отрицательной области. Стандартные величины термодинамических функций (при 0=0,5 и — 100°С) равны Qa=5,4 ккал/моль, р (химический потенциал) = =—1,8, UI = — (Qa—L) =—1,8 ккал/моль, L = 3,59 ккал/моль, ASi = 0. [c.147]

    Физические и химические свойства. Бериллий — серебристо-белого цвета, отличается твердостью п хрупкостью. В отличие от многих металлов он — диамагиетнк. На воздухе бериллий покрывается тонким слоем оксида, предохраняющим от коррозии (как и алюминий). Из элементов ПА-группы бериллий наименее активен, а потому отрицательное значение его стандартного электродного потенциала наименьшее. Следует также отметить близость этой характеристики для Ве ( -=—1,7) и А1 (Е >=—1,67 В), т. е. по химической активности эти металлы очень близки. Бериллий растворяется в разбавленных щелочах п кислотах, в том числе в HF. С водородом бериллий непосредственно не взаимодействует, при нагревании реагирует с галогенами, в атмосфере кислорода сгорает, при повышенных температурах взаимодействует с азотом и серой. [c.126]

    Принцип предлагаемого в настоящем сборнике потенциометрического метода анализа системы HNO3—N204 H20 состоит в определении содержания окислов азота химическим методом и в измерении окислительно-восстановительного потенциала анализируемого раствора. Пользуясь полученными величинами, находят при помощи специальной таблицы содержание воды в смеси. Содержание азотной кислоты в системе вычисляют по разности. Точность определения содержания воды потенциометрическим методом составляет 0,05— 0,1% абс. Большим преимуществом потенциометрического метода анализа системы является возможность осуществить на его основе автоматический контроль производства концентрированной азотной кислоты. [c.5]

    Рассматривается модифицированный метод Метрополиса для расчета на ЭВМ химического потенциала плотных газов с нецентральным межмолекулярным взаимодействием, которое описывается моделью атом-атом потенциалов. Для потенциала взаимодействия пары атомов, принадлежащих различным молекулам, выбран потенциал Леннард-Джонса. Методика применима к газам, состоящим из любых двухатомных гомоядериых молекул. Конкретный расчет проведен для азота по изотерме Т-150 К при различных плотностях. При увеличении приведенной плотности согласие [c.97]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача этих ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в ультрафиолетовой области к ксенону добавляют другие газы, например водород или пары ртути. Используют импульсные лампы и с другим наполнением кислородом, азотом, аргоном. Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической лампы. Время светового импульса фотолитической лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии, от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотношения сопротивления R, индуктивности L и емкости С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотношение i = 2 /"L/ . Уменьшение времени затухания х достигается снижением индуктивности соединительных проводов, а также сниже1 м емкости и индуктивности конденсатора (t ]/L ). При этом уменьшение [c.280]

    Rx можно вычислить, зная степени нонности связен М—X (см. табл. I—III приложения или табл. 45, 46, 48 основного текста) и величины их нормальных ковалентных и ионных рефракций (координационные числа лигандов в комплексных соединениях равны 1, и поэтому надо брать нормальные, а не кристаллические рефракции), с помощью кривых рис. 6. Здесь следует только сказать, что ввиду большой жесткости комплексных ионов (многоатомных лигандов) и того обстоятельства, что в их состав входят двух- и трехвалеитные элементы, расчет рефракций полярных лигандов NO2, S N следует вести по кривой для N и Р, т. е. более пологой, чем для одноатомных одновалентных лигандов. Собственное значение рефракции аммиака вычисляют следующим образом. Сначала определяется ионность поляризационного взаимодействия металл— аммиак но уравнению (2.78), поскольку нормальная химическая связь между центральным атомом комплекса и NH3 невозможна (потенциал ионизации аммиака берется по атому азота). Затем находится рефракция атома металла данной степени ионности, которая потом вычитается из рефракции координаты NHs—М—NH3. Именно эти нолуэмпирические значения рефракций NH3 и приведены в табл. 116. [c.261]

    Потенциал ионизации, характеризующий энергию удаления электрона от атома (с образованием положительного иона), и сродство к электрону, характеризующее энергию присоединения электрона к атому (с. образованием атрицательного иона) у углерода и азота отличаются весьма существенно. Г отенциалы ионизации первого порядка (отрыв первого электрона) для атомов углерода и азота равны соответственно И,26 и 14,53 эв, сродство к электрону 2—1,24 и 0,05 эв. Исходя из значений потенциалов ионизации, сродства к электрону и других физико-химических характеристик была рассчитана 3 относительная электроотрицатель НОСТЬ атомов углерода и азота,. равная соответственно 2,6 и 3,0 (т. е. атом азота является более электроотрицательным). [c.9]

    Несмотря на большой отрицательный электрохимический потенциал бериллия (—1,85 В) и, следовательно, его высокую термодинамическую активность, бериллий, вследствие образования защитных пленок, довольно устойчив в атмосферных условиях. Его блестящая, серебристая поверхность лишь очень медленно тускнеет на воздухе. В этом отношении он похож на алюминий и магний, на которые несколько похож по внешнему виду и химическим свойствам. При нагреве бериллий, по сравнению с алюминием и магнием, гораздо лучше сохраняет свою прочность. При нагреве на воздухе до 400—500 °С бериллий окисляется очень слабо, при 800Х — достаточно быстро. С водородом заметно не реагирует, с азотом при высоких температурах образует нитриды ВезЫз. Холодная и горячая вода не оказывают на бериллий заметного воздействия. Стационарный потенциал бериллия в растворе 0,5 н. Na l равен пример- [c.276]

    Метод прикатодного слоя [3] имеет преимущество при анализе следов элементов с не слишком высоким потенциалом ионизации (<9 эВ) и при условии, что другие легкоионизируемые элементы не присутствуют в больших количествах. Мешающее действие малых количеств посторонних легкоионизируемых элементов можно ослабить использованием незначительных навесок проб (< 10 мг). В этом случае анализируемый материал (смешанный с угольным порошком) помещают в полость катода, а излучение прикатодного слоя выделяют путем подбора соответствующей экспозиции. Поскольку температура катода относительно низка, благоприятный предел обнаружения можно получить, если только определяемые примеси достаточно летучи. Хотя интенсивность циановых полос в области вблизи катода относительно низка, все же целесообразно возбуждение спектров проводить в газе или смеси газов, свободных от азота. В методе прикатодного слоя большое внимание нужно уделять точному выбору места в прикатодном слое, от которого регистрируется излучение, толщине этой области и возможности воспроизводимо ее устанавливать на оптическую ось. Эти требования легче удовлетворить при большом расстоянии между электродами (например, 10 мм). Однако следует отметить, что интенсивность спектральных линий быстро изменяется с удалением места регистрации от поверхности электрода. Это изменение зависит от потенциала ионизации элемента, скорости движения его частиц, энергии возбуждения его спектральных линий и т. д. Поэтому нужно обращать большое внимание на то, чтобы физические и химические свойства стандартных образцов и энергии возбуждения линий х п г были бы как можно ближе друг к другу. Последнее требование и требование воспроизводимой установки места регистрации в прикатодном слое никогда не могут быть удовлетворены полностью. Благодаря этому точность такого метода анализа относительно низка. [c.268]

    Растворы приготовлялись из трижды перегнанной, химически чистой сорной кислоты. Электрод предварительно травился в течение 20—25 сек. в кипящей царской водке, затем тщательно отмывался в горячей, дважды перегнанной воде и перед началом измерений восстанавливался до потенциала 0,5—0,6 в в том же приборе или в отдельной ячейке в последнем случае электрод при внесении в прибор вновь окислялся кислородом воздуха. Опыты проводились в атмосфере азота, тщательно очищенного от следов кислорода. Перед впуском в прибор азот проходил через ловушку, иогрушенную в жидкий воздух. До начала облучения раствор предварительно насыщался азотом в течение 3—4 часов. Во время облучения азот через раствор не пропускался. Источником излучения служил радиоактивный кобальт — Со , активностью 80 кюри. Количество энергии, поглощаемой 1 мл раствора за 1 сек., составляло в среднем 2,5-101 эв. [c.67]

    Соединения серы с другими элементами. Сера образует ряд соединений не только с металлами, но и неметаллами. Из них важнейшими являются ее производные с галогенами, азотом и углеродом. Со фтором она образует инертный, бесцветный, термически и химически устойчивый газообразный ЗРб. Удивляет, что вещество при такой большой молекулярной массе — летуче. Это связано с ковалентным характером связи и неполярностью молекулы в целом. Инертность молекулы проявляется в том, что на вещество не действует ни вода, ни щелочи, ни кислоты. Такая низкая реакционная способность обусловлена насыщенными и валентным и координационным состояниями атома серы (см. рис. 58). Он окружен шестью соседями — атомами фтора и находится в своем устойчивом 8р с1 --валеятиом состоянии. Использование а -орбиталей приводит к тому, что электроны вовлечены в общую систему молекулы, прочно связаны и потенциал ионизации поэтому высок и составляет [c.269]


Смотреть страницы где упоминается термин Азот, химический потенциал: [c.14]    [c.79]    [c.146]    [c.134]    [c.100]    [c.94]    [c.50]    [c.53]    [c.317]    [c.74]    [c.121]    [c.178]   
Термодинамика многокомпонентных систем (1969) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал химическии

Потенциал химический

Химический потенция



© 2024 chem21.info Реклама на сайте