Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал электрический электродный, измерение

    Электрическая схема измерения электродного потенциала компенсационным методом приведена на рис. 5.11. Проволока (реохорд) АВ присоединена к источнику тока с известной эдс -El. По проволоке перемещается подвижный контакт, соединенный через гальванометр со стандартным электродом сравнения гальванического элемента. Другой электрод, потенциал которо- [c.261]


    Принцип компенсационной схемы измерений упрощенно показан на рис. 67. Навстречу ЭДС, возникающей в электродной паре 4> направляют ЭДС источника постоянного тока 1 через реохорд 2. Скользящим контактом измеряют разность потенциалов до полной компенсации. При наступлении полной компенсации, т.е. равенства ЭДС электродов и сухого элемента, гальванометр 3 показывает отсутствие электрического тока в цепи. В этот момент по положению контакта реохорда и определяют величину электродного потенциала (ЭДС электродной пары). [c.401]

    Для получения истинного значения электродного потенциала минералов производят измерение электродного потенциала минерала и параллельно определяют точку нулевого заряда при одинаковом изменении условий среды (например, pH или окисление). Затем отмечают электродный потенциал, соответствующий точке нулевого заряда, и полученное значение электродного потенциала используют в качестве условного нуля в данной серии экспериментов. Определение точки нулевого заряда или момента изменения знака заряда поверхности может быть осуществлено любым -удобным методом электрокинетические измерения, измерения емкости двойного электрического слоя, метод снятия поляризационных кривых и т. д. [c.76]

    При погружении металлов в их расплавленные соли, являющиеся электролитами, в результате взаимодействия между ними возникает разность электрических потенциалов, которую можно определить, измерив э. д. с. элемента, составленного из исследуемого электрода (металла и его расплавленной соли) и электрода, потенциал которого условно принят за нуль. При измерениях в расплавах в каче стве такого электрода используют натриевый, хлорный, стеклянно-натриевый и другие электроды. В табл. 62 приведены электродные потенциалы металлов в расплавленных галогенидах по отношению к потенциалу натриевого электрода при 700° С, а в табл. 63 — ориентировочные значения электродных потенциалов анионов в расплавах при 700° С. [c.406]

    Другой подход к измерению поляризации — определение потенциалов при разных расстояниях от носика до В с последующей экстраполяцией до нулевого расстояния. Как показано в разделе 4.4, подобная поправка необходима только при. измерениях, требующих большой точности, а также при необычно высоких плотностях тока или при необычно низкой проводимости электролита, например в дистиллированной воде. Однако эта поправка не учитывает возможной ошибки из-за высокого сопротивления пленки продуктов реакции, которой может быть покрыта поверхность электрода. Предложен специальный электрический контур для электролитов с высоким сопротивлением. Он позволяет измерять потенциал с поправками на падение напряжения в электролите и в электродных поверхностях пленках. [c.50]


    В практических условиях электрод сравнения не может быть проведен к границе двойного электрического слоя, он располагается иа значительном расстоянии от нее. Поэтому в измеряемую величину включается омическая составляющая разности потенциалов, которая возникает за пределом двойного электрического слоя и электродом сравнения. Это падение напряжения не является перенапряжением, оно не определяет ни характер, ни скорость электродных реакций на металле. Поэтому при измерениях, связанных с контролем минимальных и максимальных поляризационных потенциалов, падение потенциала за пределами двойного электрического слоя нужно исключать. Присутствие омической составляющей приводит во многих случаях к ошибочным заключениям относительно защищенности трубопровода. [c.129]

    Чтобы определить лимитирующую стадию, сравнивают закономерности исследуемого электродного процесса с закономерностями, характерными для различных стадий. При этом для измерения поляризации используют трехэлектродную электрохимическую ячейку (см. рис. 49), позволяющую определить изменение отдельного гальвани-потенциала, а скорость электродного процесса измеряют при помощи приборов, фиксирующих электрический ток. После определения лимитирующей стадии, соответствующим образом изменяя условия электродного процесса, можно изменить его скорость в нужном направлении. Данная стадия оказывается лимитирующей лишь в определенных условиях, и изменение этих условий (например, изменение поляризации) может привести к смене лимитирующей стадии. После этого варьирование параметра, от которого сильно зависела скорость электродного процесса, может перестать оказывать на нее заметное влияние. [c.171]

    При погружении малоактивного металла — меди, например,— в раствор ее соли будет иметь место обратный процесс, т. е. переход ионов металла из раствора в кристаллическую решетку металла. В данном случае поверхность металла приобретает положительный заряд, а прилегающий к ней слой раствора—отрицательный (за счет избытка в растворе анионов). Здесь также возникает двойной электрический слой и, следовательно, определенный электродный потенциал. Таким образом, при погружении металлов в растворы их солей более активные из них (2п, Мд, Ре и др.) заряжаются отрицательно, а менее активные (Си, Ag, Аи и др.) положительно. Потенциал каждого электрода зависит оТ природы металла, концентрации (точнее активности) его ионов в растворе, а также от температуры. Если цинковую и медную пластинки соединить проводником электричества, то электроны с цинковой пластинки устремляются по нему к медной, в цепи появляется электрический ток, который может быть измерен гальванометром О. [c.156]

    В связи с этим возникла идея на момент измерения электродной поляризации выключать поляризующий ток, что и достигается применением специального устройства — коммутатора, позволяющего изменением соединений в электрических цепях снизить промежуток времени между выключением внещнего тока и измерением потенциала электрода до 10 —10 сек. В этом случае в измеренную величину сдвига потенциала не включается величина омического падения напряжения, так как Ш = 0. Если перерывы тока будут очень кратковременными, то поляризация в момент выключения будет достаточно близкой к значению ее при заданной плотности тока. [c.256]

    Необходимо, однако, отметить, что для некоторых электродов, например платинового, в щелочных растворах перенапряжение в зависимости от концентрации щелочи не подчиняется уравнению замедленного разряда. Поэтому возникла необходимость в экспериментальной проверке скорости процесса разряда, что и было осуществлено Б. В. Эршлером, П. И. Долиным и А. Н. Фрумкиным, которые показали, что в некоторых случаях удается подобрать такие условия, когда при измерении скорости суммарной электрохимической реакции можно непосредственно измерять скорость одного этапа реакции, например разряда иона с переходом его в адсорбированный атом. Для этого платиновый электрод в определенном интервале потенциалов покрывают адсорбированными атомами водорода количество этих атомов на единице поверхности платинового электрода зависит от потенциала электрода. По мере увеличения анодной поляризации количество их убывает. При потенциале на одну десятую вольта положительнее, чем потенциал обратимого водородного электрода, выделение молекулярного водорода практически прекращается таким образом, можно полагать, что по сравнению с другими процессами оно не играет существенной роли. Если теперь такому электроду сообщить через раствор некоторое количество электричества, то единственно возможной электродной реакцией становится реакция разряда ионов водорода с переходом их в адсорбированные атомы. Дальнейшие стадии — образование молекул водорода — здесь не могут протекать. Для определения скорости процесса разряда удобнее применять переменный ток различной частоты. В самом деле, если электрод включить в цепь переменного тока, то он будет вести себя подобно конденсатору, т. -в. электроду будет эквивалентна электрическая схема, в котором емкость с и омическое сопротивление R включены параллельно. [c.322]


    В последнее время был получен обширный экспериментальный материал по электрохимическим и химическим свойствам хемосорбционных слоев на металлах. При этом были использованы измерения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Так, например, было установлено, что адсорбция йода на платине сопровождается значительным проникновением его в глубь металла. Поскольку связь между металлом и адсорбированными атомами имеет дипольный характер, образование атомных слоев приводит к нарушению строения двойного электрического слоя вплоть до изменения знака потенциала. Характерно также заметное снижение емкости двойного слоя, вызванное созданием адсорбционных слоев. [c.348]

    Гальванический элемент. Ячейка для измерения электродного потенциала (рис. 10.3) представляет собой при-мер электрохимического (гальванического) элемента — устройства, в котором химическая энергия окислительновосстановительной реакции непосредственно преобразуется в электрический ток. [c.149]

Рис. 3.28. Распределение тока и потенциала в области локального анода поД земного трубопровода а — расположение электродных участков и электродов сравнения 6 — схема распределения потенциалов в — результаты измерения ф — электрический потенциал / — напряжение Рис. 3.28. <a href="/info/66700">Распределение тока</a> и потенциала в <a href="/info/25624">области локального</a> анода поД земного трубопровода а — расположение электродных участков и <a href="/info/6490">электродов сравнения</a> 6 — <a href="/info/140031">схема распределения</a> потенциалов в — <a href="/info/92458">результаты измерения</a> ф — <a href="/info/15838">электрический потенциал</a> / — напряжение
    Систематизацию и классификацию существующих вольтамперометрических методов проводят с использованием разных признаков общности и различия. Как уже отмечалось, в вольтамперометрии в качестве электрического воздействия может использоваться либо заданный потенциал индикаторного электрода, изменяющийся во времени по некоторому закону E t), либо заданный ток i t). В первом случае сигналом-откликом является ток, а во втором - электродный потенциал. В соответствии с этим аппаратурные методы вольтамперометрии могут быть либо с контролируемым потенциалом - потенциостатические методы, либо с контролируемым током - гальваностатические методы. Однако электрические свойства электрохимической ячейки таковы, что в большинстве случаев потенциостатический режим измерения обеспечивает более простой в обработке и интерпретации сигнал-отклик и, следовательно, лучшие метрологические и эксплуатационные характеристики. В связи с этим в дальнейшем будут рассмотрены в основном потенциостатические методы. [c.314]

    Метод квадратно-волновой полярографии впервые применили Баркер и Дженкинс [289]. Этот метод основан на наложении на электродный потенциал переменного напряжения квадратной формы малой амплитуды. Измерению подлежит переменная составляющая электролизного тока в зависимости от потенциала, который меняется, как и в обычной полярографии, линейно во времени. Для устранения емкостной составляющей переменного тока измерение производится в конце каждого полупериода тока, когда двойной электрический слой на поверхности электрода успевает приобрести новый электрический заряд. Согласно Баркеру и Дженкинсу [289], могут быть определены концентрации восстанавливающихся обратимо веществ порядка 2-10 М. Аналитическое применение метода описано в работах [398—401], а его теория — в работе [484]. [c.244]

    Потенциостатические методы. Контролируемое смещение электродного потенциала от обратимого значения и измерение электродного отклика электрода, т.е. тока, заряда или электрического импеданса. [c.158]

    При обсуждаемом здесь понятии омического падения потенциала речь ни в коем случае не идет о перенапряжений в смысле разности между потенциалом е и равновесным потенциалом бц. Омическое падение напряжения, строго говоря, нельзя причислить и к поляризации, которая определяется как разность потенциалов при протекании е ( ) и в отсутствие е (о) тока. Так как термин поляризации является более общим и так как это определение ничего не говорит о причинах, то представляется обоснованным омическое падение напряжения называть омической поляризацией. Поэтому следует говорить не об омическом перенапряжении, а об омической поляризации. При теоретическом исследовании механизма электродных процессов введение и обсуждение величин, относящихся к омическому падению напряжения, не представляет никакого интереса. Однако при экспериментальных исследованиях омическое падение напряжения часто играет большую роль. Поэтому падение потенциала за пределами двойного электрического слоя, которое здесь будет называться омической поляризацией, нужно элиминировать при электрохимических измерениях. [c.411]

    При изучении защитных свойств смазочных материалов широкое распространение получили электрохимические методы. Это — измерение электродных потенциалов, снятие поляризационных кривых гальваническими и потенциостатическими методами, измерение силы тока, возникающего между двумя электродами и др., а также измерение электрического сопротивления и емкости (импеданса) пленок, определение их пробивного сопротивления. О скорости электрохимических реакций судят по поляризационным кривым, выражающим зависимость между смещением потенциала электрода и плотностью протекающего через него тока (гальваностатический метод). Образование на металле хемосорбционных соединений четко проявляется по изменению работы выхода электрона из металла, обусловленного электрическим взаимодействием между металлом и адсорбирующимся веществом. [c.321]

    Стандартный электродный потенциал (см.) в неводных растворителях часто мало отличается от такового в воде, хотя различия в степени сольватации ионов могут привести к некоторому его смещению. Для измерения электродных потенциалов в неводных растворителях обычно пригодны электроды сравнения, используемые для водных растворов. Однако при замене растворителя скорости электрохимических реакций могут радикально измениться, поскольку изменятся факторы, определяющие легкость перехода электронов на поверхности электрода. К таким факторам относятся сольватация электроактивных ионов, их способность к образованию ионных пар и комплексообразованию, адсорбируемость растворителя и активных частиц на поверхности электрода и ряд других, которые могут влиять на структуру двойного электрического слоя (см.). [c.117]

    В условиях перепассивации сумма скоростей растворения металла и окисления среды равна анодной плотности тока. Соответственно этому обе указанные скорости можно опреде- лить измерением одной из них и плотности тока. В нашем исследовании измеряемой была скорость растворения металла. Скорость растворения металла, плотность тока и анодный потенциал измерялись в гальваностатических условиях в И-об-разном сосуде, разделенном стеклянным фильтром на два отделения. Исследуемым электродом служила железная проволока с содержанием 0,09% углерода диаметром 0,06 см. Длина, конца проволоки, соприкасающегося со средой, в опытах с измерением потенциала — 1,2—2 см, в опытах без измерения потенциала 0,5—0,8 см. Электроды сравнительно малых размеров применены для устранения или возможного уменьшения перегревания раствора электрическим током. Для возможного снижения омической составляющей электродного потенциала электрод был упруго прижат к капиллярному кончику трубки электролитического ключа, и испытания проводились тем более кратковременные, чем большей была скорость растворения металла. Скорость растворения металла определялась по потере веса образца и вычислялась в электрических единицах, [c.3]

    Для измерения электродного потенциала собирают электрическую цепь, состоящую из исследуемого электрода и электрода, потенциал которого известен (его называют электродом сравнения или полуэлементом), причем электролиты, в которые погружены оба электрода, должны сообщаться друг с другом, а сами электроды должны быть разомкнуты. [c.63]

    Общая характеристика газовых электродов. Любой газовый электрод представляет собой полуэлемент, состоящий из металлического проводника, контактирующего одновременно с соответствующим газом и с раствором, содержащим ионы этого газа. Конструирование газового электрода и измерение потенциала системы газ — раствор ионов газа невозможно без- участия металлического проводника, так же как любой электрод немыслим без проводника с электронной проводимостью. Однако металл в газовых электродах не только создает электронно-проводящий электрический контакт между газом и раствором его ионов, но и ускоряет медленно устанавливающееся электродное равновесие, т. е. служит катализатором. Следовательно, в газовых электродах могут быть использованы не любые металлы, а лишь те, которые обладают высокой каталитической активностью по отношению к реакции газ — ионы газа в растворе. Кроме того, потенциал металла в газовом проводнике не должен зависеть от активности других ионов, присутствующих в растворе, в частности от активности собственных металлических ионов. Являясь катализатором реакции между газом и его ионами в растворе, металл газового электрода в то же время должен быть инертным по отношению к другим возможным реакциям. Наконец, металл в газовом электроде должен обеспечивать создание по возможности большей поверхности раздела, на которой могла бы протекать обратимая реакция перехода газа в ионное состояние. Всем этим требованиям лучше всего удовлетворяет платина, которая чаще всего и используется при конструировании газовых электродов. Для создания развитой поверхности платину покрывают электролитически платиновой чернью, получая так называемую [c.163]

    Э. д. с. системы выражается теперь через три вольта-потенциала, каждый из которых, так же как и э. д. с., может быть непосредственно измерен все они отвечают электрической работе переноса элементарного заряда между соответствующими точками в одной и той же фазе. В этом состоит несомненное преимущество уравнения (425) перед (418). Электродный потенциал в условной водородной шкале также можно выразить уравнением (425), если под металлом 1 подразумевать платину, насыщенную водородом при атмосферном давлении и погруженную в раствор с активностью водородных ионов ан+ = 1, а под величиной — вольта-потенциал, отвечающий водородному электроду. [c.207]

    Если сумма скачков потенциала в рассмотренных четырех двойных электрических слоях равна нулю, то на поверхности металла имеется так н зываемый абсолютный нуль потенциала. Потенциалы, вычпсленныг по отношению к этому нулю, называются абсолютными потенциалами. Абсолютный нуль потенциала не может быть вычислен теоретически или определен экспериментально. Однако, как выяснилось, нет необходимости знать абсолютные значения потенциалов. Для термодинамических расчетов достаточно знать условные равновесные потенциалы, измеренные по отношению-к стандартному водородному электроду. Для исследования кинетики электродных процессов должен быть известен условный потенциал по отношению к так называемому потенциалу нулевого заряда, который для каждого металла и растворителя имеет определенное значение. [c.300]

    Металл, погруженный в электролит, называется электродом. Наибольшая принципиальная трудность, связанная с использованием уравнения Нернста, обусловлена невозможностью измерить потенциал одного единственного электрода. Например, если попытаться определить путем измерения электродный потенциал 2п/2п , т.е. разность потенциалов между металлическим цинком и раствором соли цинка, в который он погружен, необходимо металл и раствор соединить проводником с измерительным прибором. Соединить прибор с металлом нетрудно, гораздо сложнее присоединить к прибору раствор. Это соединение можно осуществить только с помощью металлического проводника, который опускается в раствор. Но как только металл проводника (например , медь) приходит в соприкосновение с раствором, на его поверхности образуется двойной электрический слой и, следовательно, появляется разность потенциалов. Итак, при помощи измерительного прибора можно определить не электродный потенциал одного электрода (металла), а разность потенциалов между двумя электродами (в данном случае разность потенциалов между цинковым и медным электродами). Поэтому при измерении электродных потенциалов металлов выбирают некоторый электрод сравнения, потенциал которогсГ словно принят за нуль. Таким электродом сравнения служит стандартный водородный электрод (рис. 3.2). Он представляет собой платиновую пластину, покрытую тонко измельченной "платиновой чернью , погруженную на платиновой проволоке в стеклянный 32 [c.32]

    Следовательно, при поляризации переменным током часть его /р, пропорциональная мс, представляет ток перезаряжения двойного слоя. Другая часть тока (фарадеевский ток) /ф, пропорциональная Мг, характеризует скорость электрохимической реакции. Отношение I/1ф — <лГрС определяется тангенсом угла сдвига фаз. Измерение амплитудных значений потенциала электрода, поляризующего тока и угла сдвига фаз дает возможность рассчитать доли емкостного и электрохимического токов. Рассматривая последний ток, можно сделать заключения о характере самих электродных процессов. В общем случае емкость и сопротивление электрода зависят от потенциала, поэтому появляются искажения синусоидальной кривой, что затрудняет применение этого метода к изучению электрохимических реакций. Применением прямоугольного переменного тока удается снизить влияние тока перезаряжения двойного слоя. При подаче на электрод единичного прямоугольного импульса тока (рис. 127) скорость заряжения определяется емкостью двойного слоя с и сопротивлением электрической цепи г. Если внутреннее сопротивление электролитической ячейки мало, а генератор прямоугольных импульсов имеет низкое выходное сопротивление, то в силу малой величины постоянной времени цепи (т = гс) электрод будет заряжаться за время т = 5т . Следовательно, через время т все изменения потенциала электрода и силы поляризу-228 [c.228]

    Принцип измерения был описан со ссылкой на рис. 2.7 [43]. При отсутствии измерительных подсоединений к трубопроводу или слишком больших расстояний между ними, а также ввиду низкой точности измерение электродных потенциалов трубопроводов нецелесообразно. В этих случаях более выгодны измерения разности потенциалов. На рис. 3.28 представлены более подробные данные о размещении электродов сравнения вокруг локального (местного) анода, а также схемы распределения потенциалов и результаты измерений. Для облегчения понимания схем распределения потенциалов и пояснения знаков делается ссылка на рис. 2.8. Электрические потенциалы трубопровода и электродов сравнения обозначены через <рме, фвк, срвх, фвх и фв =. При этом электроды сравнения Вм, Вх и 5 ,располагаются пад трубопроводом, а электрод Во — на той же высоте, что и Вх, но чуть в стороне. Электрический потенциал земли не зависит от места и на рис. [c.124]

    Электродвижущая сила двойного электрического слоя не поддается прямому измерению и вместо нее рассматривают э. д. с. элемента, один электрод которого изготовлен из исследуемого металла, а вторым служит стандартный водородный электрод, э. д. с. которого условно принимается равной нулю. Электродвижущую оилу такого эле.мента Е называют электродным потенциалом. Так как для стандартного водородного электрода э, д. с. = 0, то э. д. с. элемента по величине и знаку равна э. д. с. исследуемого металла Е=Уже-Через число Фарадея Р э. д. с. связана с изменением термодина.ми-ческого потенциала реакции AZ соотношением [c.231]

    Для вьиисления емкости но выражению (118) необходимо знать истинную площадь поверхности электрода (истинную плотность тока). Емкость, вьиислеппая по уравнению (118), представляет собой среднюю емкость электрода на участке II кривой заряжения. Если заряд электрода изменяется от О до q, а электродный потенциал - от ф =о ДО Ф (потенциал точки нулевого заряда), то измеренная емкость носит название интегральной емкости двойного электрического слоя  [c.75]

    Согласно теории электрокапиллярных кривых, емкостный ток равен нулю в точках максимума этих кривых (т. е. при потенциале электрокапиллярного нуля), когда на поверхности ртути нет зарядов и двойной электрический слой отсутствует. При потенциалах, более положительных, чем потенциал электрокапиллярного нуля (его значение зависит от состава раствора и, например, в хлоридах равно —0,56 в относительно н. к. э. см. табл. 1), поверхность капли заряжена положительно, и электроны во внешней цепи проходят в направлении от капельного электрода к вспомогательному. Так возникает анодный емкостный ток, которому в полярографии приписывают отрицательное направление (знак минус). При потенциалах, более отрицательных, чем потенциал электрокапиллярного максимума, поверхность капли имеет отрицательный заряд в этом случае емкостный ток течет в противоположном направлении (знак плюс) и называется катодным емкостным током (рис. 16 и 17). На кривых зависимости среднего емкостного тока от потенциала электрода, зарегистрированных с помощью обычно применяемого в полярографии гальванометра, так же как и на кривых зависимости среднего тока, обусловленного электродной реакцией, от потенциала, имеются осцилляции. В области электрокапиллярного максимума они исчезают, так как при потенциале электрокапиллярного максимума двойной слой не образуется и ток заряжения отсутствует. По уравнению (3) можно рассчитать среднее значение емкостного тока, которое интересно сравнить с экспериментально найденными величинами. Рассмотрим конкретный пример. В 0,1 н. КС1 скорость вытекания т = = 1 мг-сек , период капания = 1 сек, а удельная емкость (измеренная другим методом) С = 20 мкф1см . При потенциале капельного электрода = — 1,56 б (н. к. э.) емкостный ток 4= 0,85-20-10 -(—1,56 + 0,56) х X (1 10 ) - з-(1) з = 1J. 10 а такое же значение получено и экспериментально. Следует подчеркнуть, что в уравнения для емкостного тока нужно подставлять потенциал, отнесенный к потенциалу электрокапиллярного нуля в данной среде (обозначается Е ). [c.48]


Смотреть страницы где упоминается термин Потенциал электрический электродный, измерение: [c.204]    [c.33]    [c.165]    [c.246]    [c.261]    [c.246]    [c.246]    [c.254]    [c.47]    [c.44]    [c.37]    [c.33]    [c.258]   
Практикум по физической химии Изд 5 (1986) -- [ c.322 , c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал измерения

Потенциал электродный потенциал

Электрические измерения

Электрический потенциал

Электродный потенциал



© 2025 chem21.info Реклама на сайте