Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса плавлении

    По зависимости давления насыщенного пара от температуры и плотности данного вещества А с молекулярной массой М в твердом и жидком состояниях ( ТВ и ж в кг/м ) в tpoйнoй точке (тр.т) 1) постройте график зависимости Ig Р от 1/Т 2) определите по графику координаты тройной точки 3) рассчитайте среднюю теплоту испарения и возгонки 4) постройте график зависимости давления насыщенного пара от температуры 5) определите теплоту плавления вещества при температуре тройной точки 6) вычислите dT/dP для процесса плавления при температуре тройной точки 7) вычислите температуру плавления вещества при давлении Р Па 8) вычислите изменение энтропии, энергий Гиббса и Гельмгольца, энтальпии и внутренней энергии для процесса возгонки 1 моль вещества в тройной точке 9) определите число термодинамических степеней свободы при следующих значениях температуры и давления а) Ттр.т. Ртр.т б) Т .т.к. Р = I атм в) Т в.т. Ртр.т- Необходимые для расчета данные возьмите из таблицы (см. с. 167). [c.166]


    В соответствии с изменением типа химической связи и структуры в свойствах бинарных соединений проявляется более или менее отчетливо выраженная периодичность. Об этом, например, свидетельствует характер изменения по периодам и группам стандартной энтропии, температуры плавления, энтальпии и энергии Гиббса образования в зависимости от порядкового номера элемента с положительной степенью окисления (рис. 130), В изменении параметров отчетливо проявляется также вторичная периодичность (рис. 131). [c.247]

    Фазовые равновесия в гетерогенных системах. Правило фаз Гиббса. Гетерогенными фазовыми равновесиями называются равновесия, устанавливающиеся в физических процессах перехода веществ из одной фазы (простой или смешанной) в другие фазы (простые или смешанные). Такие равновесия наблюдаются при кипении жидкости под постоянным давлением (жидкость пар), плавлении кристаллов (твердое жидкость), при выделении кристаллов из насыщенного раствора соли (жидкость—твердое—пар) и т. д. Термодинамическое равновесие в гетерогенных системах характеризуется сколь угодно длительным сосуществованием нескольких фаз в условиях постоянства давления и температуры при этом концентрации веществ в каждой фазе и парциальные давления не изменяются, т.е. 1 i dn.i = О, и как показано в гл. VII, 8, химический потенциал любого компонента I во всех фазах а, р, у... одинаков, т. е. р, = = [У. =. ... В целом многофазная гетерогенная система в состоянии истинного равновесия имеет минимальное абсолютное значение изобарного потенциала. [c.156]

    Правило фаз (Д. Гиббс, 1873—1876) устанавливает, при каких условиях (температуре, давлении, концентрациях веществ) имеющиеся фазы гетерогенных систем находятся в состоянии термодинамического равновесия. Гетерогенные равновесия, при которых процесс перехода веществ из одной фазы в другую не сопровождается изменением их химического состава, называются фазовыми равновесиями (например, испарение, плавление, растворение, полиморфные превращения и др.). Для характеристики фазовых равновесий широко пользуются уравнением правила фаз, которое связывает число фаз Ф, число компонентов К и число степеней свободы С равновесных гетерогенных систем Ф-ЬС = К-Ь2. Это уравнение обычно применяют для определения числа степеней свободы, т. е. [c.66]

    Поскольку в числителе правой части записана разность химических потенциалов чистого вещества в жидком и твердом состояниях при температуре Т, равная мольной энергии Гиббса плавления растворителя, то [c.129]


    Здесь Д0°, как н прежде, изменение О при плавлении чистого компонента. Используя уравнение Гиббса—Гельмгольца и повторяя рассуждения, подобные приведенным выше (стр. 233), приходим к уравнению, аналогичному (VII, 20а)  [c.238]

    Решение. На основании кривых охлаждения строим диаграмму плавкости (рис. 30, б). Кривая 1 соответствует охлаждению чистого золота. При 1337 К на кривой охлаждения наблюдается температурная остановка она соответствует температуре плавления золота. Чистые вещества кристаллизуются при постоянной температуре. По правилу фаз Гиббса (Х1.3) число компонентов К = 1, число фаз Ф = 2, я = 1  [c.235]

    Температура плавления простых веществ. Температура плавления характеризуется состоянием равновесия твердой и жидкой фаз. При температуре плавления энергия Гиббса твердой и жидкой фаз одинаковая = 0 , т. е. Д0 = 0, или [c.189]

    Рис, 104. Зависимость свойств двухэлементных соединений от атомного номера элемента с положительной степенью окисления а — температура плавления оксидов б—энергия Гиббса образования хлоридов [c.198]

    Первое правило Гиббса—Розебума гласит жидкий раствор обогащен по сравнению с твердым раствором тем компонентом, прибавление которого к системе понижает температуру плавления. [c.204]

    Плавление. Плавление вещества относится к фазовому переходу первого рода, который сопровождается изменением внутренней энергии, объема, энтропии и энтальпии [3]. Это вытекает из теории термодинамики, согласно которой в условиях, равновесия системы сосуществуют две фазы, и мольные свободные энергии Гиббса вещества в обеих фазах равны (61 = (12). Тогда разность ДО фазового перехода будет равна нулю, а ее первые производные по температуре (Г) и давле-ипю (Р) испытывают скачок [c.105]

    Термодинамика. Плавление и кристаллизация полимеров представляют собой фазовые переходы первого рода. Этим переходам соответствует скачкообразное изменение первых производных энергии Гиббса (О), в частности энтальпии Н=0 — Т дС дТ)р, энтропии 8 = — (дО/дТ)р и объема V — дО/дР)т, где Р —давление, Т — температура. [c.182]

    Для каждого агрегатного состояния О является функцией температуры. Для трех агрегатных состояний необходимо ввести три функции С"" (7), 0 (Г) и 0 " (7). Эти функции по-разному изменяются с температурой, поскольку производная энергии Гиббса по температуре согласно (12.41) есть —5, а энтропии разных агрегатных состояний существенно различаются. В соответствии с этим функция будет убывать более полого, чем С (7), а последняя в свою очередь более полого, чем 0 (Т). При определенных значениях температуры кривые, изображающие эти зависимости, пересекаются. При температуре, отвечающей точке пересечения кривых 0 ° Т) и С (7 ), в равновесии находятся твердая и жидкая фаза, и, таким образом, эта точка является точкой плавления вещества. В точке пересечения кривых С (> ) и О " (Г) при определенном давлении р будут сосуществовать жидкая и газовая фазы, и это будет точка кипения (температура кипения) вещества при заданном давлении. [c.197]

    Температура плавления 150° К ДЯ° для плавления 300 кал-моль , а) Вычислите по третьему закону термодинамики мольную энтропию этого вещества в жидком состоянии при 300° К. б) Рассчитайте мольную энтальпию плавления, энтропию плавления и свободную энергию плавления Гиббса при 100° К. Какой знак будет иметь ДС  [c.49]

    Бода, молекулы которой включают тяжелые изотопы водорода и кислорода, обобщенно называется тяжелой водой. Однако под тяжелой водой прежде всего имеют в виду дейтериевую воду ВгО . В природной воде 99,73% приходится на обычную воду НгО . Из тяжелых разновидностей в природной воде больше других содержится НгО (0,2 мол. доли, %), НгО (0,04 мол. доли, %) и НВО (0,03 мол. доли, %). Содержание остальных разновидностей тяжелой воды, в том числе и тритиевой ТгО, составляет не более мол. доли, %. Химическое строение молекул тяжелой воды такое же, как у обычной, с очень малыми различиями в длинах связей и углах между ними. Однако частоты колебаний в молекулЕ1Х с тяжелыми изотопами заметно ниже, а энтропия выше, чем в протиевой воде. Химические связи В—О и Т—О прочнее связи Н—О, числовые значения изменения энергии Гиббса реакций образования В2О и ТгО более отрицательны, чем для Н2О (-190,10, -191,48 и -185,56 кДж/моль соответственна). Следовательно, прочность молекул в ряду НгО, В2О, Т2О растет. Для конденсированного состояния разновидностей тяжелой воды также характерна водородная связь. Лучше других исследованы свойства дейтериевой воды В2О, которую обычно и называют тяжелой водой. По сравнению с НгО она характеризуется большими значениями плотности, теплоемкости, вязкости, температур плавления и кипения. Растворимость большинства веществ в тяжелой воде значительно меньше, чем в протиевой. Более прочные связи В—О приводят к определенным различиям в кинетических характеристиках реакций, протекающих в тяжелой воде. В частности, протолитические реакции и биохимические процессы в ней значительно замедлены. Вследствие этого тяжелая вода является биологическим ядом. Получают тяжелую воду многоступенчатым электролизом воды, окислением обогащенного дейтерием протия, изотопным обменом между молекулами воды и сероводорода с последующей ректификацией обогащенной дейтерием воды. [c.301]


    Качественная корреляция с характером изменения энтальпий атомизации наблюдается и в изменении температур плавления простых веществ (рис. 7), которые также в определенной мере обусловлены сравнительной прочностью связей в кристаллах. При этом надо иметь в виду, что полная корреляция была бы возможна, если бы простые вещества обладали одинаковой структурой и одинаковыми значениями энтропии. Дело в том, что плавление как фазовый переход характеризуется равенством свободных энергий Гиббса сосуществующих фаз, т. е. одновременно надо учитывать и энталь-пийный, и энтропийный факторы. Значения же энтальпии атоми-зацни сопоставимы только с одним из них. Тем не менее наинизшие температуры плавления в пределах каждого периода свойственны благородным газам, в малых периодах в пределах группы температуры плавления понижаются, а для d-элементов наблюдается более [c.35]

    Таким образом, энтропия СО стремится при приближении к абсолютному пулю к величине, 1п2, равной 5,73 Дж/(моль-К). Подобное явление наблюдается в случае некоторых жидкостей, которые ниже температуры плавления переходят ие в кристаллическое состояние, а в стеклообразное, имеющее энтропию большую нуля вблизи О К. Хотя стеклообразное состояние характеризуется более высокой энергией Гиббса, оно не превращается в кристаллическое из-за медленного установления равновесия при низких температурах. Оно становится замороженным . Таким образом, отличие от нуля калориметрически измеряемой энтропии замороженных тел не противоречит третьему закону, а обусловлено тем, что они не находятся в состоянии термодинамического равновесия. [c.88]

    Согласно изложенному выше, в случае неограниченной растворимости в жидком состоянии кривые G — состав для всех расплавов должны быть вогнутыми к оси абсцисс. Энергия Гиббса всех тел с ростом температуры уменьшается, так как согласно уравнению (11.34) dG/dT) р =—S, а энтропия всегда положительна. Поэтому чем выше температура, тем ниже располагаются кривые G — состав. Кривая, соответствующая высокой температуре Ti, лежащей выше точек плавления компонентов А и В, расположена [c.189]

    При более низкой температуре Тг. лежащей ниже точки плавления чистого вещества А, соответствующая кривая лежит выше предыдущей. При этой температуре, как видно из рис. VII.21, молярная энергия Гиббса чистого—>-Л в твердом состоянии ниже, чем в жидком. Иными словами, при этой температуре компонент А в жидком, состоянии неустойчив относительно твердой фазы и должен кристаллизоваться. При еще более низкой температуре Тз, кривая С—XI выше двух предыдущих и точка касания Ь соответствует точке к на линии ликвидус и молярной доле хь. Проведение касательной к кривой О — состав при этой температуре позволяет найти точку на линии ликвидус и состав расплава хв- Наконец, при еще более низкой температуре Т4, соответствующей образованию эвтектики Те, из расплава одновременно кристаллизуются компоненты А и В. Набор подобных кривых позволяет построить всю диаграмму состояния. Поясним, что при температуре ниже точки плавления компонента А величины Оаж относятся к переохлажденной жидкости. [c.190]

    Нарисуйте кривые нагревания или охлаждения (см. 16-14) веществ при давлениях, обозначенных (давление тройной точки) и р ,. Определите число степеней свободы на различных участках кривых / — X (время, горизонтальная ось). Не забудьте, что температуру измеряют при постоянном давлении (в формуле Гиббса число факторов, влияющих на равновесие, уменьшается на единицу ). Объясните физический смысл горизонтальных участков кривых. Почему при плавлении, кипении, возгонке, кристаллизации, конденсации температура вещества сохраняется постоянной  [c.163]

    Кристаллическое, стеклообразное, аморфное состояния. В подавляющем большинстве случаев твердые тела представляют собой кристаллы. Если в структурном отношении жидкость характеризуется наличием только ближнего порядка, то в кристаллах ближний порядок переходит в дальний, т.е. упорядоченное расположение атомов распространяется на весь объем твердой фазы. С термодинамической точки зрения образование упорядоченной кристаллической структуры энергетически выгодно (ниже температуры плавления), т.е. в этих условиях кристаллическому состоянию отвечает минимум свободной энергии Гиббса. Хотя при понижении температуры энтропия уменьшается (упорядоченность возрастает), но при этом наблюдается значительное уменьшение внутренней энергии (или энтальпии). В результате, как следует из уравнения (VI.5), при образовании кристалла происходит уменьшение свободной энергии (Д(7 < 0). [c.186]

    Сравнительно низкая температура плавления ВеС объясняется его слоистой структурой. В побочных подгруппах Периодической системы наблюдается уменьшение энергии Гиббса образования низших хлоридов, например  [c.468]

    В соответствии с изменением типа химической связи и струн туры в свойствах бинарных соединений проявляется более и. и менее отчетливо выраженная периодичность. Об этом, наприме ), свидетельствует характер изменения по периодам и группам ет и1 дартной энтропии, температуры плавления, энтальпии и энергии Гиббса образования однотипных соединений (рис. 104). В изме [c.197]

    Согласно первому правилу Гиббса — Розебума твердый раствор по сравнению с жидким раствором, находящимся с ним в равновесии, богаче тем компонентом, прибавление которого к расплаву повышает температуру начала кристаллизации твердого раствора. По второму правилу Гиббса — Розебума в точках максимума и минимума кривых температур плавления твердый раствор и находящийся с ним в равновесии жидкий расплав имеют одинаковый состав. Система, изображенная на диаграмме плавкости фигуративной точкой О (рис. 147, 148), при Р = onst инвариантна (С = = 2-2+1-1 =0). [c.410]

    Карбиды, силиды. Железо с углеродом образует два соединения— крайне неустойчивый карбид состава Fea , который обычно переходит в карбид состава РезС, называемый цементитом-, последний также термодинамически неустойчив, но при растворении в железе его устойчивость повышается и в составе различных сталей находится именно цементит. Энтальпия образования цементита + 25 кДж/моль, энергия Гиббса образования +18,8 кДж/моль. Цементит представляет собой серые кристаллы ромбической системы, очень твердые, с плотностью 7,7 г/см и температурой плавления 1560°С энтропия Ре С 108 Дж/(моль-К). В воде не растворяется, с кислотами реагирует е выделением водорода. Цементит хорошо растворим в Y-железе, меньше — в б-железе и совсем мало в Oi-железе. Иэ диаграммы состояния еистемы Ре — РезС (рис. 50) видно, как изменяется растворимость цементита в железе в зависимости от температуры. Твердый раствор цементита в v-железе называется аустенитом. Растворимость цементита в 7-железе при эв- [c.305]

    При проведении аналогий между ультрамикрогетерогенными системами и истинными растворами часто обсуждается специфика применения правила фаз Гиббса к этим системам. Возможность применения к золя]и молекулярно-кинетических законов, законов статистики и энтропии позволяет их рассматривать как системы, обладающие свойствами гетерогенно-дисперсных систем и истпн-ных растворов. Частицы истинных гетерогенно-дисперсных систем не участвуют в тепловом движении. С уменьщением размера до величин, отвечающих ультрамикрогетерогеиной области, частицы постепенно теряют свойство фазы — независимость термодинамических свойств от количества фазы. Как уже известно из разд. II. Д, термодинамические свойства частиц в этой области зависят от дисперсности (изменяются внутреннее давление, растворимость, температура плавления и другие параметры). Одновременно частицы начинают участвовать в тепловом движении системы. Чем меньше частицы, тем дальше система от истинного гетерогенно-дисперсного состояния и тем ближе к истинному раство-ру. [c.209]

    Максимумы, наблюдаемые на диаграмме, соответствуют образованию устойчивых химических соединений. В точках максимумов, как это следует из второго правила Гиббса—Розебума, состав жидкой и твердой фаз совпадает. Эти точки, в которых температура плавления максимальна, называются дистектиками (что означает тредноплавящийся ). О смесях, состав которых в жидкой и в твердой фазах одинаков вследствие образования новых химических соединений, говорят, что они плавятся конгруэнтно. ( Конфуэнт-ный означает совпадающий .) [c.207]

    Диаграмму трехкомпонентной системы изображают с помощью трехгранной прямоугольной призмы, основанием которой является равносторонний треугольник Гиббса длина перпендикуляра, восставленного из точки, выражающей данный состав, соответствует изображаемому свойству, например температуре плавления. [c.124]

    Важное отличие процессов плавления чистого растворителя 1 раствора состоит в следующем чистый растворитель в соответствии с правилом фаз Гиббса 2, с. 19] плавится при постоянной температуре, если давление со.чраняется постоянным (число степеней свободы системы равно нулю). Как плавление кристаллов, так и обратный процесс кристаллизации жидкости совершаются при одной и той же температуре (если не происходит переохлаждения жидкости). [c.151]

    Поскольку при переходе типа беспорядок -> порядок энтропия должна уменьшаться, т. е. А5кр <С О, естественно, что выражение (VI. 1) может соблюдаться только при условии, если упорядочение частиц сопровождается уменьшением теплосодержания системы, т. е. если АЯкр < 0. В точке плавления кристалла энергии Гиббса кристаллической и аморфной фаз равны, т. е. [c.183]

    Пусть Ср —энергий Гиббса расплава полимера. Тогда, по,ль-зуясь уравнением (VI. 3), можно выразить изменение энер1ии Гиббса при плавлении реальной кристаллической фазы  [c.186]

    Это обусловлено тем, что удельный объем веществ в жидком состоянии обычно больше удельного объема в твердом состоянии. Рассмотрим вопрос о влиянии давления на равновесие фаз в системе на примере диаграммы, изображенной на рис. 79 (pi > Ро)- Из диаграммы видно, что повышение давления в системе привело к увеличению температур начала кристаллизации расплавов чистых веществ А, В и эвтектики. Эвтектическая температура для расплава Е больше, чем для расплава Е. Изменяется и состав эвтектики. Эти положения вытекают из правила фаз Гиббса. Действительно, если в двухкомпонентной системе учитывать влияние давления, то инвариантная точка возникает лишь в том случае, если система будет четырехфазной. Если же в равновесии находятся только три фазы, то в этом случае система будет моновариантной и, следовательно, будет существовать зависимость соответствующих температур плавления и состава фаз от давления. [c.212]

    Поскольку объем и энтропия являются первыми производными от термодинамического потенциала Гиббса, то можно говорить о скачке вторых производных от этого потенциала при фазовом переходе пторого рода. В случае фазового перехода периого рода (плавление, испарение и др.)-скачок испытывают, сами функции К и 5, т. е. первые производные от термодинамического потенциала Гиббса. Согласно же общей формулировке порядок фазового перехода определяется самым низким порядком производной от термодинамического потенциала Гиббса, которая либо терпит разрыв, либо обращается в бесконечность, [c.355]


Смотреть страницы где упоминается термин Гиббса плавлении: [c.136]    [c.673]    [c.233]    [c.156]    [c.268]    [c.186]    [c.110]    [c.134]    [c.130]    [c.108]    [c.304]    [c.211]    [c.220]    [c.118]   
Краткий справочник физико-химических величин Издание 8 (1983) -- [ c.51 , c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббсит



© 2024 chem21.info Реклама на сайте