Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометрия лазерная

    Не все молекулы поглощают инфракрасное излучение. В частности, молекулы с определенными свойства.ми симметрии, как, например, гомоядерные двухатомные молекулы, не поглощают инфракрасного излучения. В более сложных молекулах не все типы колебаний обязательно соответствуют поглощению инфракрасного излучения. Например, симметричные молекулы, как, скажем, этилен, Н,С=СН2, не обнаруживают всех своих колебаний в инфракрасном спектре. Для того чтобы помочь исследованию колебаний таких молекул, часто используется спектроскопия комбинационного рассеяния (КР). Спектр КР возникает в результате облучения молекул свето.м (обычно в види.мой области) известной длины волны. В современных спектрометрах КР в качестве источника света, облучающего образец, обычно используется лазерный пучок (рис. 13-35). Поглощение излучения измеряется косвенным путем. При облучении светом высокой энергии [c.590]


    В атомно-абсорбционной спектрометрии для атомизации пробы используют пламя, электротермическую атомизацию, воздействие мощного лазерного импульса и др. Наиболее старым, но до сих пор, пожалуй, наиболее распространенным является способ атомизации анализируемой пробы в пламени. Пламя представляет собой простой, надежный, дешевый н экспрессный атомизатор для большого числа проб различного состава. Метрологические характеристики (достаточно низкие пределы обнаружения, хорошая воспроизводимость )езультатов) пламенного способа атомизации позволяет широко использовать атомно-абсорбционную спектрометрию для решения большого числа аналитических задач. [c.139]

    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]

    Главное направление развития М. а.-использование физ. методов (напр., масс-спектрометрии, атомно-эмиссионной спектроскопии, рентгеновского локального анализа, лазерной аналит. спектроскопии). Совр. методы М. а. позволяют Б одной микропробе или на пов-сти твердого тела определять более 50-60 элементов. [c.85]

    Для контроля качества препаратов PH и РФП используют радиометрические и физико-химические методы активационный анализ, 7-спектрометрию, ионообменную хроматографию в сочетании с масс-спектрометрией, лазерную спектроскопию и другие методы. Выбор метода аналитического контроля определяется, в частности, агрегатным состоянием образца, допустимой продолжительностью анализа. [c.337]


    РИС. 1. Спектрометр лазерного магнитного резонанса [c.31]

    Для анализа неорганических объектов сложного состава перспективны методы искровой, лазерной и масс-спектрометрии вторичных ионов. Аналитические характеристики этих методов уникальны универсальность (определение 40 элементов) низкий абсолютный (10°—10" г, в некоторых случаях до г) и относительный [до 10 % (ат.)] пределы [c.753]

Рис. 8.8. Схема спектрометра лазерного магнитного резонанса. В этом приборе сочетаются эффекты внутрирезонаторного поглощения и магнитной модуляции. Анализируемая проба находится в камере между двумя полюсами магнита. Из работы Дэвнса н Ивенсопа [29] (с разрешения авторов). Рис. 8.8. <a href="/info/142629">Схема спектрометра</a> <a href="/info/3014">лазерного магнитного резонанса</a>. В этом приборе сочетаются эффекты <a href="/info/870320">внутрирезонаторного поглощения</a> и <a href="/info/1619698">магнитной модуляции</a>. Анализируемая проба находится в камере между двумя полюсами магнита. Из работы Дэвнса н Ивенсопа [29] (с разрешения авторов).
    На протяжении последних 20 лет исследование бимолекулярных реакций в газовой фазе являлось одной из основных задач[ химической кинетики. За это время значительно увеличился объем кинетической информации, возросло ее качество. Достигнуто это в значительной степени благодаря применению новых, и усовершенствованию существующих экспериментальных методов, использованию чувствительных средств регистрации (атомной и молекулярной резонансной спектрометрии, лазерно-индуцированной флуоресценции, электронного парамагнитного резонанса, лазерного магнитного резонанса). [c.140]

    Химические реакции в предпламенной зоне. Химические реакции в пламени и предпламенной зоне протекают с очень большой скоростью, что крайне затрудняет их изучение. О характере химических реакций можно судить путем идентифицирования стабильных продуктов, образующихся в результате этих реакций. Для таких исследований были разработаны техника зондирования пламени пробоотборниками, а также техника бесконтактного оптического зондирования пламен. Анализ проб проводили с использованием современных высокочувствительных физических методов — масс-спектрометрии, хроматографии, лазерного магнитного резонанса и др. Таким образом была получена достаточно надежная информация о химических реакциях, протекающих в предпламенной зоне и в пламени. [c.120]

    Многоквантовая ионизация (МКИ) легко достигается с использованием лазерного УФ-излучения. Процесс называется резонансно-усиленной многоквантовой ионизацией, если в него вовлечены резонансные промежуточные состояния. Для однофотонной фотоионизации больщинства частиц требуется использование длин волн излучения короче, чем пропускаемые материалами оптических волн, как указывалось в конце разд. 3.2. Использование двух- и многоквантового возбуждения позволяет осуществлять ионизацию для резко возрастающего набора частиц. Поскольку надежно детектируются очень низкие концентрации образовавшихся ионов, МКИ играет важную роль в спектроскопических исследованиях. Кроме того, велико значение МКИ и в масс-спектрометрии. Экспериментальные методики, объединяющие фотоионизацию и масс-спект-рометрию с селективным возбуждением, давно ценились за специфичность, с которой отдельные частицы или конкретные квантовые состояния могут быть ионизованы. Использование лазерной МКИ, обеспечивающей более высокую эффективность ионизации и относительную простоту оборудования, существенно расширяет область применения этого метода. [c.76]

    Пределы обнаружения элементов в пламени (иг/мл), достигнутые методом лазерной АИ-спектрометрии [c.186]

    К специфическим помехам в АИ-методе следует отнести возможность ионизации атомов элементов, входяш,их в состав основы пробы, а также помехи вследствие перекрывания спектральных линий атомов определяемого элемеита и элементов основы пробы.,. Аналитическая лазерная АИ-спектрометрия является новым методом, который все больше н больше привлекает внимание хи-миков-аналитиков своими основными достоинствами — высокой чувствительностью и селективностью. Разработка новых эффективных способов атомизации в АИ-методе позволит существенно расширить его область применения. [c.188]

    Методы фотоионизации довольно слабо использовались для идентификации промежуточных продуктов, однако с появлением лазеров в ионизационных измерениях их диапазон существенно расширился. Основная идея заключается в том, что пучком фотонов с одинаковой энергией можно ионизовать промежуточный продукт реакции (например, СНз), не вызывая ионизации и фрагментации вещества-предшественника (например, СН4), или ионизовать молекулы вещества в высоком возбужденном состоянии, не затрагивая молекулы в более низких состояниях. При этом достигается высокая чувствительность, так как ионы образуются лишь тогда, когда есть промежуточный продукт, для идентификации ионов по массе можно использовать масс-спектрометры. Многоквантовая ионизация и резонансно-усиленная многоквантовая ионизация (см. разд. 3.9) обеспечивают ионизацию различных веществ без использования источников вакуумного УФ-излучения. Под действием лазерного излучения высокой интенсивности можно получить очень высокие квантовые выходы ионизации. [c.198]


    Эксперименты со скрещенными пучками дают наиб, полную информацию о взаимод. между частицами, в т. ч. о хнм. р-циях, позволяя проследить траектории рассеянных частнц нли продуктов р-ции. Этого достигают тем, что сначала определяют скорости, углы взаимод. и др. исходные состояния пучков реагентов, а затем измеряют распределение рассеянных частиц, в т. ч. продуктов, по скоростям, внутр. степеням свободы, углам рассеяния. Установка со схрещен-ньп (и пучками состоит из неск. вакуумных камер с дифференц. откачкой, источников мол. пучков (однн из к-рых, как правило, газодинамический), мех. модуляторов пучков, детектора, разл. селекторов для выделения частнц с энергиями в заданном интервале значений, систем управления экспериментом, сбора и обработки данных. Распределения рассеянных частиц по скоростям обычно определяют времяпролет-ным методо.м. при к-ром измеряют времена прохождения частицами известного расстояния. Применяют разл. детекторы масс-спектрометры с ионизацией электронным ударом или лазерным излучением с поверхностной ионизацией манометрич. микровесы полупроводниковые лазерные (основанные на лазерно-индуцир. флуоресценции). [c.123]

    Твердые растворы замещения в названных системах были идентифицированы также методами лазерной масс-спектрометрии (определение стехиометрического состава), ИК-спектроскопии (определение [c.130]

    В некоторых промышленных спектрометрах КР в качестве источника света используются лазеры лазерная спектроскопия КР). [c.289]

Рис. 17.2. Схема лазерного спектрометра КР. Рис. 17.2. Схема лазерного спектрометра КР.
    В иаституте Баттель (Франкфурт) [294] был разработан аэрозольный спектрометр, использующий малые углы (<7,5°) рассеяния лазерного (Не—Йе) пучка. Вследствие узкой полосы рассеяния (от дифракционной части рассеянного света) результат не зависит от формы и оптических свойств частиц. Метод применим при концентрации до 10 частиц в 1 см , поскольку объем, используемый для измерения, равен 0,01 мм Нижний предел определения размеров частиц этим методом равен 0,17 мкм, а верхний предел —около 1,5 мкм. Эти исследователи разработали также прибор, который можно использовать для анализа высококонцентрированных частиц (5-10 частиц в 1 см ) в потоке. [c.99]

    Современные спектрометры КР с лазерными источниками позволяют регистрировать спектры КР с очень высокими скоростями. При помощи быстрорегистрирующей техники были, например, исследованы газофазные реакции обратимой диссоциации хлористого и бромистого нитрозила. [c.223]

    Колебательная спектроскопия применяется в современной физике, химии, фармации, в технике. Во вторе гюловине XX столетия сложился целый раздел науки — спектрохимия, включающий разнообразные аспекты использования спектральных методов исследования и анализа для решения химических задач. В химии особенно широко распространены методы ИК-спектроскопии, что обусловлено двумя причинами. Во-первых, применение методов ИК-спектроскопии (часто — в сочетании с методами спектроскопии КР) помогает решать многочисленные задачи структурного или аналитического характера. Во-вторых, в последние десятилетия стали доступными ИЬ -спектрофотометры, выпускаемые промышленностью различных стран, относительно несложные в обраше-нии и удобные для проведения спект зальных измерений. С начала семидесятых годов XX столетия увеличивается и число промышленных спектрометров для получения спектров КР с использованием лазерных источников возбуждения спектров. [c.529]

    ХИМИЯ высоких ЭНЕРГИЙ, изучает кинетику и механизм р-ций, к-рые характеризуются существенно неравновесными концентрациями быстрых, возбужденных или ионизиров. частиц, обладающих избыточной энергией по сравнению с энергией их теплового движения, а часто и с энергией хим. связей. Термин введен в СССР в нач. 60-х гг. 20 в. Осн. разделы X. в. э. радиационная химия, фотохимия, плазмохимия, лазерная химия, а также изучение хим. р-цнй в пучках быстрых атомов, ионов или молекул, ряд проблем механохимии и ядерной химии. Хотя р-ции, изучаемые в разл. разделах Х.в. э., инициируются или ускоряются под действием разл. факторов, их объединяет общность элементарных хим. процессов с участием электроиов, ионов, радикалов, ион-радикалов, электронно-возбужденных и быстрых атомов и молекул. Реализуются новые механизмы р-ций, мало вероятные в равновесных сист. нри обычных т-рах. Др. характерная черта X. в. э.— общность методов исследования в разных ее направлениях. Широко распространены оптич. методы, масс-спектрометрия, радиоспектроскопия, а также эксперим. методы квантовой электроники, атомной и ядерной физики. [c.653]

    Спектрометры высокого разрешения позволяют измерять очень тонкие расщепления B. . молекул и определять молекулярные параметры с высокой точностью. Так, длины связей находят по B. . с точностью до тысячных долей нм, валентные углы-до десятых градуса. Микроволновая спектроскопия наряду с газовой э.гектронографией — осн. метод изучения геометрин молекул. Все шире применяется для этих целей также лазерная КР-спектроскопня и Фурье-спектроскопня. [c.430]

    Наиб, распространены спектрофотометрич. и спектрографич. методы регистрации. Для регистрации кинетики пропускания, т е. изменения во времени поглощения света образцом, используют непрерывный или модулированный (для повыщения яркости во время измерения) источник зондирующего света и монохроматор в сочетании с фотоумножителем и импульсным осциллографом или накопителем сигналов (для улучшения отношения сигнал шум при многократном повторении эксперимента), либо электронно-оптич. преобразователем с временной разверткой. Измеряя кинетику пропускания при разл. длинах волн зондирующего света, можно построить по точкам спектры поглощения промежут. продуктов фотохим. р-ции с разл. временами жизни. Для непосредств. регистрации спектров поглощения, что особенно важно в случае узких линий поглощения продуктов, напр, в газовой или твердой фазе, используют импульсные источники света с непрерывнь№< спектром в сочетании со спектрографом и фотопластинкой (или фотоэлектрич. устройством). Используют также нано- и пикосекундные импульсы зондирующего света, синхронизированные с возбуждающим лазерньпи импульсом их создают с помощью разл. преобразователей частоты исходного лазерного импульса и оптич. линий задержки. Измеряя спектры пропускания при разл. временах задержки, можно исследовать кинетику образования и гибели промежут продуктов. Спектрофотометрич. метод, как правило, обладает значительно более высокой чувствительностью, чем спектрографический, позволяя измерять изменение поглощения до 10 Для регистрации промежут продуктов используют также методы люминесценции, кондуктометрии, ЭПР, масс-спектрометрии и др. [c.220]

    Л. с. применяют для исследования кинетики и механизма р-ции (в т. ч. фотохим.), точного измерения мол. постоянных (напр., моментов инерции), избират. определения ульт-рамалых кол-в в-ва и т.д. Спектры многоступенчатого лазерного возбуждения обладают большей избирательностью, чем обычные спектры поглощения, хорошо комбинируются с хроматографией, масс-спектрометрией и т.д. [c.565]

    М.-с. позволяет определять все элементы периодич. системы с чувствительностью 10 г при использовании лазерных источников ионизации м.б. достигнута чувствительность 10 г. При анализе твердых проб м.б. определены примеси, содержание к-рых в 10 ниже содержания осн. элементов. М.-с. широко применяется в анализе особо чистых металлов (Ga, Al, In, Fe, u и др.), полупроводниковых материалов (Si, GaAs, dFe), сплавов на основе Ре, Ni и Zr при произ-ве тонких пленок и порошкообразных в-в, напр, оксидов и и редкоземельных элементов. М.-с. позволяет определять содержание С, N, О, S, Р в сталях, анализировать керамику, стекла, разл. изоляц. материалы, проводить локальный и послойный анализ пробы (локальность по пов-сти до 1 мкм, по глубине до 1 мм), получать сведения о структуре и фазовом составе твердых тел. Для определения элементов используют масс-спектрометры с ионизацией образцов в электрич. дуге, искровом и тлеющем разряде или в индуктивно-связанной аргонной плазме при атм. давлении. [c.663]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    I3I0, 1314, 1316 3/1102, 1103 4/J52, 297, 421, 813 5/331, 742, 953. См. также Ианы, Масс-спектрометрия Ионные методы 1/916. См. также Ионизация дозиметрия 2/220 нитегрнроваине тока 2/1317 лазерная десорбция 5/742 литография 5/334 микроанализ 2/511, 512 3/431 отложение 2/1149, 1152 селективное детектирование 5/629 спектроскопия масс, см. Масс-спек-трометрия [c.615]


Смотреть страницы где упоминается термин Спектрометрия лазерная: [c.92]    [c.11]    [c.358]    [c.39]    [c.62]    [c.147]    [c.167]    [c.315]    [c.347]    [c.64]    [c.316]    [c.663]    [c.100]    [c.261]    [c.471]    [c.122]    [c.136]    [c.21]    [c.21]    [c.21]   
Введение в молекулярную спектроскопию (1975) -- [ c.65 , c.156 , c.157 ]




ПОИСК







© 2024 chem21.info Реклама на сайте