Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть, углеводороды низшие

    Согласно представлениям, принятым в химии нефти, ненасыщенные углеводороды обладают одной или большим числом активных двойных связей в молекуле. В противоположность ароматическим углеводородам двойная связь в ненасыщенных углеводородах обнаруживает способность ко многим реакциям присоединения, например таким, как присоединение галоидов и серной кислоты. Ненасыщенные углеводороды всегда отсутствуют в продуктах прямой гонки, но представляют собой важный класс углеводородов в крекинг-бензинах. Присутствие двойной активной связи легко обнаружить в углеводородах низкого и среднего молекулярного веса, включая газойли. Свойства высокомолекулярных ненасыщенных соединений почти неизвестны, поэтому любые выводы о составе ненасыщенных высококипящих фракций следует считать недостоверными. [c.12]


    Различие между указанными выше классами углеводородов особенно резко для углеводородов низкого и среднего молекулярного веса, присутствие в которых ароматического кольца или двойной связи придает им характерные свойства этих структур. Однако классификация становится сомнительной для высокомолекулярных углеводородов, которые могут содержать ароматические, нафтеновые, олефиновые или парафиновые структуры без обнаружения свойств, характерных для преобладающей структуры. Высокомолекулярные углеводороды смазочных масел с ароматическими и нафтеновыми кольцами и длинными парафиновыми боковыми цепями могут обладать ароматическими, нафтеновыми и парафиновыми свойствами в зависимости от преобладания соответствующих структур. Кольцевой анализ, развитый Уотерманом и его школой, преодолевшими эти трудности, позволяет определять среднее содержание парафиновых боковых цепей, ароматических и нафтеновых колец. В этой главе рассматриваются лишь индивидуальные углеводороды и классы углеводородов, присутствующих в нефти. [c.12]

    В СССР в промышленных масштабах нефть добывается так же давно, как и в США. Нефтеносные площади Баку известны в течение столетий как источники нефти и газовых факелов. Наиболее богатые нефтяные месторождения расположены между Черным и Каспийским морями, а также в районах несколько севернее и восточнее этой области [3, 24, 40]. Существует предположение, что в дальнейшем добыча будет развиваться в центральных районах Азии, на тысячу миль и более к востоку от Баку и к северу от Афганистана. Можно считать, что нефтеносные структуры и свиты напоминают нефтеносные структуры и свиты США. Около одной трети перспективных площадей лежит севернее 60° северной широты, и разработка их представляет некоторые затруднения Старые месторождения Баку (плиоценовые свиты) дают нефти смешанного основания, содержащие мало серы и довольно большие количества смолистых и асфальтовых веществ. Эти нефти характеризуются низким содержанием бензиновых фракций (менее Ю ), низким содержанием ароматических углеводородов но высоким содержанием нафтеновых и изопарафиновых углеводородов и поэтому довольно высоким октановым числом. Только в некоторых месторождениях, как, например, в Сураханском, добываются нефти более парафинового основания, используемые в качестве сырья для производства керосина и смазочных масел. Грозненские нефти (миоцен) обладают более высоким содержанием бензиновых и керосиновых фракций (25 и 15%), [c.56]


    В результате значительного роста цен на нефть и низких цен на гудрон (вследствие конкуренции природного газа) были сконструированы вакуумные трубчатые перегонные кубы для увеличения выхода дистиллятных продуктов из сырой нефти. В вакуумный трубчатый перегонный куб в различных местах вводится водяной пар для облегчения дополнительного испарения нефти. Предусмотрены специальные меры для отделения воды от конденсировавшихся углеводородов. [c.129]

    Моноклинали, закупоренные отложениями битумов, асфальта и пр. При движении к выходу на дневную поверхность нефть приходит иногда в соприкосновение с циркулирующими в месторождении водами, часто содержащими много сульфатов и других солей. Если нефть имеет низкую вязкость и содержит в своем составе парафины, между нею и солями воды никаких реакций не происходит или же они происходят в весьма слабой степени, поэтому высачивание нефти через головные части пластов происходит более или менее беспрепятственно. Там же, где нефть содержит высокий процент смолистых веществ и вообще ненасыщенных углеводородов , между солями воды и названными веществами воз- [c.277]

    По общему содержанию ароматических углеводородов валгу-умные дистилляты можно разделить на две основные группы дистилляты малосернистых нефтей с низким (15—35% масс.) содержанием ароматических углеводородов и дистилляты сернистых нефтей с повышенным содержанием ароматических углево-дородов (45—масс.), В вакуумных дистиллятах сернистых [c.21]

    Прямогонные базовые компоненты бензинов с удовлетворительной детонационной стойкостью могут быть получены только из ограниченного ассортимента нефтей, к которым относятся нефти нафтенового основания Азербайджана, Средней Азии, Краснодарского края, Сахалина, Украины и некоторые другие [2]. Добыча этих нефтей непрерывно сокращается. Бензиновые фракции нефтей Урало-Волжского бассейна, Казахстана, Татарстана и многих месторождений Западной Сибири состоят в основном из нормальных парафиновых углеводородов и имеют низкие октановые числа 40—50 по моторному методу [2]. Поэтому прямогонные бензины этих нефтей ввиду низкой детонационной стойкости не могут использоваться в качестве базовых компонентов. В товарные бензины вовлекаются только низкокипящие прямогонные фракции этих нефтей, выкипающие в пределах 30—62°С и 30—85°С и имеющие октановое число 60—75. [c.23]

    Удельный вес нефти зависит от нескольких причин во-первых, от содержания легкокипящих фракций, обладающих низкими удельными весами, во-вторых, от содержания смолистых веществ с высокими удельными весами (около 1) и, в-третьих, от типа преобладающих в нефти углеводородов. В количественном отношении влияние легкокипящих компонентов значительнее, чем влияние смол, так как разница в удельных весах легкокипящих компонентов и средних фракций нефти выше, чем разница между плотностями смол и средних фракций. Третья причина — характер преобладающих в нефти углеводородов, имеет значение главным образом для сравнения более или менее широких нефтяных фракций с одинаковыми границами кипения. [c.11]

    Топливные фракции, получаемые в термических процессах глубокой переработки нефти, характеризуются, как правило, высоким содержанием серы, олефиновых и ароматических углеводородов, низкой термоокислительной стабильностью, склонностью к образованию смол и осадков. Бензиновые дистилляты имеют к тому же невысокие октановые числа. Дизельные дистилляты как термических процессов, так и каталитического крекинга отличаются низким цетановым числом. Все это требует применения специальных технологий для существенного улуч-щения качества указанных продуктов. Учитывая жесткие требования к экологическим характеристикам как автобензинов, так и дизельных топлив, выдвинутые в последние годы, следует признать освоение таких технологий приоритетной задачей нефтеперерабатывающей промыщленности как за рубежом, так и в России. [c.340]

    Растворим в этаноле, нефти, ароматических и алифатических углеводородах, низко-молекулярных одноатомных спиртах, нерастворим в воде [c.147]

    Для получения индивидуальных моноциклических ароматических углеводородов наиболее перспективен процесс каталитического риформинга на платиновом катализаторе. Некоторую сложность здесь представляет получение больших количеств бензола из узких фракций восточных нефтей вследствие ограниченности ресурсов фракции 60—85° прямой перегонки нефти и низкого содержания в ней нафтеновых углеводородов. В связи с высоким содержанием в этих фракциях парафиновых углеводородов, возможно, более рациональным окажется процесс каталитической ароматизации их на высокоактивном хромовом катализаторе. [c.106]


    Асфальты деасфальтизации западносибирских нефтей имеют низкую температуру размягчения по КиШ, содержат почти вдвое меньше асфальтенов, чем асфальтены из татарских нефтей, и не могут быть использованы в качестве высокоплавкого компонента при получении компаундированных вязких дорожных битумов. Гудроны западносибирских нефтей также имеют меньшую вязкость, плотность, коксуемость, содержание асфальтенов. В них содержится большое количество высокоиндексных углеводородов, причем по сравнению с туймазинским гудроном индексы вязкости соответствующих групп углеводородов выше, а содержани-е асфальтенов в 1,5-2 раза ниже. [c.145]

    Бензиновые фракции западно-сибирских нефтей имеют низкие октановые числа (25—67) вследствие высокого содержания парафиновых углеводородов. [c.384]

    Состав среднеюрских нефтей Медведевского месторождения представляет интерес. Это легкие нефти плотностью 0,83, малосернистые и малосмолистые. Особенность их углеводородного состава заключается в том, что в дистилляте до 85,9% метановых и 9% ароматических углеводородов. Содержание нафтеновых углеводородов низкое, а в некоторых высших фракциях они даже отсут- [c.20]

    В Колумбии [21, Перу, Аргентине [32, 17а, 43] и Тринидаде в течение нескольких лет добывалось сравнительно мало нефти. Нефть Колумбии похожа на легкую нефть из долины Сан-Жоакин в Калифорнии. Содержание бензиновых фракций в этой нефти составляет около 10 %, отсутствие твер.цых парафинов позволяет получать из нес смазочные масла с низкой температурой застывания. Перуанская нефть обладает низким удельным весом, содержит более 40% бензиновых фракций и очень незначительные количества серы. Несколько продуктивных площадей имеется в Аргентине наиболее продуктивные месторождения дают тяжелую нефть промежуточного типа с содержанием бензиновых фракций не выше 10%. Другие месторождения дают болео легкие нефти среди них имеются нефти парафинового основания некоторые типы нефтей могут быть использованы для получения смазочных масел. В Тринидаде большинство добываемых нефтей смешанного основания и напоминают нефти Калифорнии. Бензин, получаемый из этих нефтей, обладает высоким октановым числом это согласуется с тем, что керосиновые дистилляты содержат такой высокий процент ароматических углеводородов, что требуется очистка экстракцией растворителями. Среди добываемых нефтей существуют некоторые различия, одна напоминает нефть из месторождения Понка Сити (Оклахома) с содержанием бензиновых фракций 32%. Все четыре страны вместе добывают около 2,0% мировой добычи. [c.56]

    В результате значительной работы было изучено влияние состава лигроина на соотношение между выходами и октановыми числами продукта [20]. Для переработки при различных режимах были использованы лигроины из нофти Кувейта с высоким содержанием парафиновых углеводородов и венецуэльской нефти с низким содержанием парафиновых углеводородов. Были получены данные для дебутанизированного бензина платформинга с октановыми числами по исследовательскому методу в чистом виде от 73 до 99 пунктов. Полученные результаты указывают на то, что парафиновые углеводороды в нефти с низким содержанием нафтенов подвергаются реакции дегидроциклизации, способствуя тем самым значительному повышению октанового числа продукта. Разница в выходах бензинов с октановым числом по исследовательскому методу в чистом виде 95 пунктов из нафтенового и парафинового сырья составляла [c.182]

    Почти все сырые нефти обладают низкой оптической активностью. Вращение обычно правое, но в некоторых случаях оно меняет направленпе, редко его совсем нет. Сила вращения сконцентрирована в определенных фракциях, причем максимум лежит у соединений с молекулярным весом от 350 до 400, это максимум для всех сырых нефтей [157 — 159]. Присутствие оптически активных веществ в устойчивой природной нефти было сильным аргументом в защиту достаточно низкотемпературного происхождения нефти из органических исходных материалов. Сначала считали, что эти соединения являются производными стеринов. Более позднее исследование показывает, что это явление может быть отнесено к углеводородам, особенно к неаро.матическим поли-циклпческим [160]. [c.186]

    В случае использования нефтей с низким содержанием смолисто-асфальтеновых веществ и ароматических углеводородов следует избегать процесса окисления, поскольку он наряду с уве тичением количества асфальтенов приводит к снижению ароматических соединений в битуме, которых в итоге оказывается недостаточно. Технология получения битумов на основе таких нефтей должна включать процессы концентрирования ас-фальтенов и ароматических углеводородов деасфальтизацию гуд-ронов, экстракцию ароматических углеводородов и др. Целесообразно также увеличивать отбор вакуумного газойля в процессе подготовки гудрона, в результате чего уменьшается доля пара-фино-нафтеновых углеводородов в гудроне.  [c.99]

    Нефть Баракаевского месторождения легкая (относительная плотность 0,8081), парафинистая (3% парафина), малосернистая (0,12% серы), малосмолистая. Выход фракций до 200 °С—49,7, до 350 °С —81,2%. Фракции до 120,°С содержат мало ароматических углеводородов (1—2%) и до 68% нафтеновых. В более высококипящих фракциях количество ароматических углеводородов достигает 39% в дистилляте 400—420 С, а содержапие нафтеновых уменьшается и во фракциях 200—250 и 250—300 °С составляет соответственно 25 и 18%. Фракция 28—200 °С баракаевской нефти имеет низкое октановое число (48,3 без ТЭС). Из нефти могут быть получены летние дизельные топлива или компоненты специального топлива. Остатки нефти характеризуются высокой температурой застывания (31—38°С), низкой коксуемосью (3,58% для остатка выше 420 °С) остаток выше 420 °С может быть использован в качестве топочного назута 100. [c.341]

    Парафино-нафтеновые углеводороды, полученные при адсорбционном разделении на силикагеле (АСК), отличаются высоким числом симметрии по-р.ядка 150) и низким значением интерцеита рефракции"(г,- 1,0327—1,0388), ято, доказывает присутствие значительного количества би- и полициклических нафтеновых углеводородов. Парафино-нафтеновые углеводороды, выделенные из фракций валенской нефти, отличаются низко температурой застыпапия (значительно более низкой, чем у других исследованных нефтей), ири этом иара-фино-нафтеновые углеводороды, выделенные из фракций валенской нефти, имеют, в отличие от углеводородов из других нефтей, более низкую температуру застывания, чем исходные фракции. Но самое основное отличие нарафино-нафте-новых углеводородов, полученных из фракций валенской нефти, заключается а следующем они не образуют комплекс с карбамидом. Это свидетельствует о том, что фракции валенской нефти практически не содержат парафиновых углеводородов нормального строения. [c.410]

    Керосины локбатанской, путинской и ясамальской парафи-нистых нефтей имеют низкую октановую характеристику, в их состав входит значительное количество ароматических углеводородов (28,3%), нафтенов (49,8%) и парафинов (21,9%). [c.60]

    Бензиновые дистилляты, полученные из указанных нефтей, отличаются низкими о ктановыми числами и высоким содержанием серы. Фракции твердиловской и покровской нефтей, отобранные в температурных пределах от 28 до 200°С, имеют октановые числа с 0,82 г ТЭС на кг топлива 44,2 и 46,4 и содержат 0,28—0,26% серы. Низ)кие октановые числа бензиновых фракций находятся в прямой связи с их групповым составом. Во всех фракциях преобладают парафиновые углеводороды. Во фракциях, выкипающих от н. к. до 200 °С, их содержится 67—75%. [c.138]

    В табл. 25 приведены физические свойства, групповой химический состав и дизельный индекс топлив, полученных из ряда нефтей Апшеронского полуострова [12]. Эти данные подтверждают и.эложенные выше положения о влиянии природы сырья и химического состава топлив на их цетановую характеристику. Высокосмолистые беспарафинистые нефти (балаханская тяжелая, бинагадинская тяжелая, кергезская и др.) дают дизельные топлива с высоким содержанием ароматических углеводородов, низким содержанием алканов и, как следствие этого, с низким цетановым числом. Нефти малосмолистые парафинистые (сураханская, кара-чухурская и др.), а также нефти смолистые беспарафинистые (раманинская, балаханская масляная и др.) дают дизельные топлива с низким содержанием ароматических углеводородов, высоким содержанием алканов и, как следствие этого, с высоким цетановым числом. Дизельные топлива из пара-финистых нефтей имеют высокую температуру застывания. С этой точки зрения лучшим сырьем для получения дизельных топлив являются смолистые беспарафинистые нефти типа бала-ханской масляной I сорта, раманинской П сорта и им подобные. [c.84]

    Нефть была перегнана на аппарате АРН-2 с отбором узких фракций, компаундированием которых получена фракция 110—240° С с выходом 29,3%, соответствующая по основным показателям топливу ТС-1. В таблице приведены физико-химические характеристики топлива ТС-1, полученного из грузинской нефти для сравнения приводятся характеристики топлив ТС-1, получаемых из сернистой ромашкинской и шаим-ской нефтей. Топливо ТС-1 из грузинской нефти содержит мало ароматических углеводородов, низкое количество общей и меркаптановой серы и обладает высокой термической стабильностью. [c.57]

    Анализ по методу ndM [21 группового состава масляной части узеньской нефти (XV горизонт), выделениой экстракционной обработкой метанол-ацето-новой смесью по методике, разработанной в Гипровостокнефти [3], показал преимущественное содержание парафиновых углеводородов. Низкое содержание ароматических и повышенное содержание парафиновы.ч углеводородов является одной нз отличительных характеристик нефтей п/о Мангышлак по сравнению с нефтями других районов СССР. [c.78]

    Несомненный интерес представляет исследование М. А. Капе-люшникова [4], показавшего, что нефть при определенном критическом давлении можно перевести в газовое ( надкритическое ) состояние даже при комнатной температуре. Особенно благоприятные условия для перевода нефти в надкритическое состояние создаются в системах нефть—этилен, нефть—смесь низких гомологов метана (этан, пропан, бутан). Не переходят в критическое газовое состояние лишь наиболее высокомолекулярные компоненты — асфальтены и частично высокомолекулярные смолы. Снижение критического давления в системе нефть—газы или введение в эту систему некоторого количества метана сопровождается выпадением наиболее высокомолекулярной части нефти. В этих условиях фракционирование нефти идет в обратном, по сравнению с обычной перегонкой, направлении сначала выпадает наиболее тяжелая часть — асфальтены, затем смолы, высокомолекулярные углеводороды п т. д. Так как легкая часть нефтп вызывает резкое повышение значений критического давления, то лучше подвергать холодной перегонке — ретроградной конденсации — нефть, освобожденную от легколетучих компонентов. Эффективность метода ретроградной конденсации иллюстрируется данными, приведенными в табл. 78 [5]. При разделении отбензиненной ромашкинской нефти, содержащей 14,4% смол и 4,1% асфа.чьтенов, при 100° было получено 75% дистиллята, совсем не содержащего асфальтенов, и лишь 3,5% смол. 75% всех асфальтенов, содержащихся в отбензиненной нефти, было сконцентрировано в первых двух фракциях, составляющих 15% от исходного сырья. В настоящее [c.245]

    Нефтяные системы состоят из низко- и высокомолекулярных углеводородных и неуглеводородных соединений. Углеводородными компонентами нефтяных систем являются в основном представители трех классов соединений алканов, циклоалканов и аренов, а также значительное количество углеводородов смешанного гибридного строения. Алкены н алкадиены в природных нефтяных системах обычно не встречаются, однако могут содержаться в продуктах переработки нефти. Неуглеводородные соединения нефти представлены главным образом смолами и асфальтенами. Элементный состав нефтяных систем колеблется в широких пределах. Так, для природных нефтей массовое содержание основных элементов углерода С, водорода Н и гетероатомов серы 5, азота N и кислорода О составляет С—83— 87, Н—12—14, 5— 0,001—8, N — 0,02—1,7, 0—0,05—3,6%. В значительно меньших количествах в нефтях присутствуют и многие другие элементы. В табл. 4 помеш.ены встречающиеся в нефтях углеводороды и гетеросоединения. [c.21]

    Сперва их источзиком являются радикалы сложных циклических молекул, а затем разрушение полиметиленовых циклов. Поэтому глубоко превращенные нефти содержат уже сравнительно мало высших полиметиленовых углеводородов. Количество метановых углеводородов растет по мере превращения нефти, и лишь в самом конце этого процесса метановые углеводороды превращаются в газы (№ 7 и 8). Так как газы в основном состоят из метановых углеводородов низкого молекулярного веса, можно сказать, что [c.215]

    Нефти состоят из парафиновых углеводородов (алканов), пяти- и шестичленных алициклических углеводородов (циклоалканов или наф-тенов) и ароматических углеводородов, содержащих одно или несколько бензольных ядер. Кроме того, в нефтях содержатся некоторые количества серо-, кислород- и азотсодержащих соединений. Сернистые соединения отрицательно влияют на качество топлива для двигателей и масел, в связи с чем переработка сернистых нефтей значительно усложняется. Поскольку содержание ароматических углеводородов в нефти очень низкое, а этиленовых и ацетиленовых — вообще нет, для их получения применяются специальные методы обработки нефтепродуктов. [c.352]

    Таким образом, изомольная плотность, для расчета которой вполне достаточны данные всего по двум наиболее легко измеряемым физическим свойствам веществ, можно рассматривать как высокочувствительный идентификационный показатель не только применительно к индивидуальным углеводородам, но и нефтяным фракциям. Практическую ценность информации мы видим в использовании ее для целей предварительной химической типизации нефтей, особенно новых месторождений, для предварительной оценки товарных их качеств и прогнозирования наиболее рациональных схем их переработки на НПЗ. Так, прямогонная бензиновая фракция нефти с высокими показателями будет иметь высокие октановые характеристики или ее можно рассматривать как высококачественное сырье для процессов каталитического риформинга. Нефти нафтенового типа можно рассматривать как наиболее благч)приятное сырье для масляных производств. Дизельные фракции нефтей с низкими показателями т.е. парафинового типа, будут характеризоваться плохими низкотемпературными свойствами, а бензиновые их фракции более рационально использовать как сырье процессов пиролиза и т.д. [c.73]

    Кроме перечисленных компонентов, сернистые и высокосернистые нефти в большинстве случаев содержат заметное количество твердых парафиновых углеводородов, обусловливаюш их высокую температуру застывания масляных фракций практически в них полностью отсутствуют нафтеновые кислоты. В бензиновых фракциях таких нефтей углеводороды метанового ряда нормального строения превалируют над нафтеновыми и ароматическими углеводородами, поэтому бензины обладают низкими октановыми числами (40— 46 пунктов по моторному методу при к. к. 200 °С). Заметное содержание серы снижает приемистость бензинов к ТЭС, и для приготовления товарных бензинов из прямогонных фракций сернистых нефтей необходимо снижать их конец кипения, удалять серу и расходовать повышенное количество этиловой жидкости. [c.21]

    По углеводородному составу бензиновые дистилляты из нефтей северо-заладных месторождений отличаются т бенз)инав из туймазинской и ромашкинской нефтей более низким содержанием ароматических и нафтеновых углеводородов. [c.84]

    В общем необходимо руководствоваться следующими соображениями. В случае использования нефтей с высоким содержанием асфальто-смолистых соединений и ароматических углеводородов технология иолучения битумов Должна включать в себя процесс окисления, способствующий образованию дополнительных количеств асфальтенов (за счет перехода части аро-матики в смолы и смол в асфальтены). Впрочем, если исходная нефть характеризуется не только высоким содержащем общего количества асфальтенов и смол, но и достаточной величиной А/С, то для получения дорожных битумов достаточна вакуумная перегонка. В случае использования нефтей с низким содержанием асфальто-смолистых веществ и ароматических углеводородов следует избегать процесса окисления, поскольку он, наряду с увеличением количества асфальтенов, приводит к уменьшению ароматики в битуме, которой, в конечном счете,, оказывается недостаточно. Технология получения битумов на основе таких нефтей должна включать в оебя процессы деасфальтизации гудронов (с целью концентрирования асфальтенов), экстракции ароматических углеводородов и компаундирования асфальтенов и экстрактов. Целесообразно также увеличивать отбор вакуумного газойля в процессе подготовки гудрона, чт приводит к относительному уменьшению доли парафино-на теновых углеводородов в гудроне. [c.55]

    Бензиновые дистилляты исследованных нефтей имеют низкую октановую характеристику (табл. 3). Из них наиболее низкими октановыми числами обладают бензины озеркипской нефти. Это полностью соответствует высокому содержанию в них метановых углеводородов (табл. 4). Однако вследствие высокого содержания серы озеркинские бензины обладают плохой приемистостью к этиловой л идкости. Тем же отличаются и бензины из аллакаевской нефти, содержапие серы в которых еще выше. [c.232]

    Нафтеновые углеводороды являются наиболее распространенными углеводородами, входящими в состав нефтей. В низко-кипящих фракциях нефтей присутствуют пяти- и шестичленные нафтешэ (циклопентан и циклогексан), а также йх производные. O o ueHHo богаты нафтеновыми углеводородами бакинские нефти. Содержание нафтеновых углеводородов по фракциям некоторых нефтей приведено в табл. 2. [c.14]

    В последние годы значительно повысились требования к качеству вырабатываемых дорожных битумов. В связи с тем, что битумы, вырабатываемые из парафинистых и высокопарафинистых нефтей, отличаются низким качеством, нами с целью получения высококачественного сырья для битумного производства было осуществлено прямое удаление твердых углеводородов непосредственно из парафинистой нефти до ее перегонки. Долинскую нефть подаергали термообработке при 50 °С, затем охлаждали до комнатной температуры и обрабатывали смесью кристаллического карбамида и тиокарбамида (от 100 до 200% на нефть). Для образования комплекса добавляли 4 - 5% (на карбамид) активатора — метанола. При необходимости в качестве растворителя применяли метиленхлорид при объемном отношении нефть метанол = 200 1. Контактирование проводили в течение 60 мин, частота вращения мешалки [c.203]

    Верхнемеловые (сеноманские) нефти, залегающие на глубинах < 1000 м, выделяются низким содержанием или отсутствием бензиновых фракций, резко нафтеновым или нафтеново-ароматическим составом средне- и высококипящих углеводородов, низкой или средней сернистостью, средней или высокой смолистостью. Нефти из глубже погруженных горизонтов нижнего мела, юры и палеозоя, как правило, характеризуются облегченным фракционным составом, высокими долями алканов в углеводородном составе дистил-лятных фракций, средней или высокой нарафинистостью и сернистостью, малой или средней смолистостью. В баррем-готеривскнх отложениях на многопластовых месторождениях (например, на Самотлорском) эпизодически встречаются не- [c.5]

    Керосиновые дистилляты из ряда нефтей отличаются низкой высотой некоп-тящего пламени (14—19 мм), что связано с высоким содержанием в них ароматических и нафтеновых углеводородов, и только некоторые дистилляты имеют высоту некоптящего пламени, равную 20 мм. Содержание серы в дистиллятах превышает 0,1%, за исключением дистиллятов, полученных из танатарской и корсакской нефтей, в которых сера содержится в незначительных количествах. [c.160]

    В литературе встречается указание на то, что при помощи ультрафиолетовых спектров можно определить в высококипящих фракциях нефти весьма низкие концентрации (до 0,08%) конденсированных полициклоароматических углеводородов. Следует, однако, подчеркнуть, что для исследования брались высококипящие фракции нефти, подвергавшиеся термокаталитической переработке в довольно жестких условиях. Первая фракция (426—555° С) была получена при вакуумной перегонке очищенного смазочного масла, вторая (315—371° С) — выделена из газойля каталитического крекинга и третья (371—437° С)—из мазута, полученного в процессе парофазного крекинга. Характеристика физических и химических свойств этих фракций [55] показывает, что конденсированные полициклические ароматические структуры, содержащиеся в них, имеют вторичное происхождение, т. е. образовались в процессе переработки нефти. [c.295]


Смотреть страницы где упоминается термин Нефть, углеводороды низшие: [c.58]    [c.491]    [c.93]    [c.618]    [c.30]    [c.160]    [c.30]    [c.190]    [c.84]    [c.144]    [c.29]   
Избранные труды (1955) -- [ c.229 ]




ПОИСК







© 2025 chem21.info Реклама на сайте