Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть углеводороды предельные также нефт

    Бурное развитие органической технологии — производство пластических масс, химических волокон, синтетических каучуков, лаков, красителей, растворителей и т. п. — требует огромных количеств углеводородного сырья, которое получается в результате химической переработки различных топлив. До недавнего времени основным источником сырья для органического синтеза был уголь, из которого при коксовании получают бензол, толуол, ксилолы, фенол, нафталин, антрацен, водород, метай, этилен и другие продукты. В нефти, находящейся в недрах земли, всегда присутствуют растворенные газы, которые при добыче выделяются из нее. Эти так называемые попутные газы содержат метан, этан, пропан, бутан и другие углеводороды. На 1 т нефти в среднем приходится 30—50 м попутных газов, которые являются ценным сырьем для химической промыщленности. Источником углеводородного сырья служат также газы, получаемые при переработке нефти крекинге, пиролизе, риформинге. В этих газах содержатся предельные углеводороды метан, этан, пропан, бутаны и непредельные углеводороды этилен, пропилен и др. Наряду с газообразными углеводородами при переработке нефти могут быть получены ароматические углеводороды бензол, толуол, ксилолы и их смеси. [c.29]


    Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]

    Кроме углеводородов, в состав нефтей входят также органические кислородные, сернистые, азотистые соединения и некоторые неорганические примеси. Углеводороды нефти в подавляющей части обладают предельным характером. [c.76]

    НЕФТЯНЫЕ ГАЗЫ — смесь различных газообразных углеводородов, растворенных в нефти, выделяющихся в процессе ее добычи и перегонки. Газы крекинга нефти, состоящие нз предельных и непредельных углеводородов (этилен, ацетилен и др.), также относят к Н. г. Н. г. применяются как топливо н как сырье для химической промышленности. Путем химической переработки из Н. г. получают пропилен, бути-лены, бутадиен и др., которые используют в производстве пластмасс, каучуков и других продуктов органического синтеза. [c.174]

    Нефтяные газы — смесь различных газообразных углеводородов, растворенных в нефти они выделяются в процессе добычи и перегонки (это так называемые попутные газы, главным образом состоят из пропана и бутанов). К Н. г. также относят газы крекинга нефти, состоящие из предельных и непредельных (этилена, ацетилена) углеводородов. Н. г. применяют как топливо и для получения различных химических веществ. Из Н. г. путем химической переработки получают пропилен, бутилены, бутадиен и др., которые используют в производстве пластмасс и каучуков. [c.89]


    Горючее минеральное сырье содержит в своем составе углерод, поэтому его также называют углеродсодержащим. К этому виду сырья относят угли, нефть, горючие сланцы, природный газ. Они способны сгорать в кислородсодержащей среде и потому служат источниками тепловой энергии. Из-за этого их также называют топливным сырьем. Горючее минеральное сырье - основа для очень широкой гаммы продуктов химических производств. Нефть - смесь предельных и непредельных, алициклических и ароматических и др. углеводородов - является сырьевой базой для группы химических производств, вырабатывающих бензин, мазут, моторное и дизельное топливо, обобщенно называемых нефтепереработкой. Природный газ используется как сырье в производстве удобрений, пластических масс и других продуктов хими- [c.26]

    Успехи гидрогенизации в различных областях химии и технологии, и в частности в области технологии нефти, и ранее давали повод к привлечению этой реакции для объяснения массового образования в природе углеводородов предельного характера. Так, еш е Сабатье и Сандеран, с именами которых связано самое начало последнего, блестяш его периода в истории гидрогенизации, выдвинули следующие представления по вопросу о происхождении нефти в глубинах земли, наряду с такими металлами, как железо, никель, кобальт и т. п., в некотором количестве находятся также щелочные и щелочноземельные металлы и притом частью в свободном состоянии, частью в виде карбидов. Реагируя с водой, проникающей к ним с поверхности земли или из водных бассейнов, первые из них дают водород, карбиды же — ацетилен. Эти газообразные вещества под влиянием каталитического воздействия железа, никеля и других металлов вступают во взаимодействие друг с другом и в результате реакций уплотнения и гидрогенизации дают смесь более высокомолекулярных углеводородов уже предельного характера — нефть. Очевидно, что представления эти, являясь одним из видоизменений теории минерального происхождения нефти, вызывают те же возражения, которые были рассмотрены выше в связи с теорией Менделеева. Очевидно также, что они значительно уступают последней в отношении вероятности исходного минерального материала при образовании нефти (щелочные и щелочноземельные металлы и их карбиды вместо углеродистого железа), но зато успешно разрешают важный вопрос о предельном характере углеводородов нефти .  [c.305]

    В нефти, находящейся в недрах земли, всегда присутствуют растворенные газы, которые при добыче выделяются из нее. Эти так называемые попутные газы содержат метан, этан, пропан, бутан и другие углеводороды. На 1 т нефти в среднем приходится 30—50 ж попутных газов, которые являются чрезвычайно ценным сырьем для химической промышленности. Источником углеводородного сырья служат также газы, получаемые при переработке не и крекинге, пиролизе, риформинге. В этих газах содержатся предельные углеводороды метан, этан, пропан, бутаны и непредельные углеводороды этилен, пропилен и др. Наряду с газообразными углеводородами при переработке нефти могут быть получены ароматические углеводороды бензол, толуол, ксилолы и их смеси. [c.454]

    Для получения ароматических углеводородов разработаны также методы каталитической циклизации предельных углеводородов нефти  [c.272]

    Природные газы, особенно те, которые связаны с нефтью, нередко содержат все газообразные углеводороды предельного ряда, а также пары высших, находящихся при обычных условиях уже в жидком состоянии. Анализ таких газовых смесей по вышеописанной методике совершенно невыполним. Как уже указывалось при сжигании смеси горючих газов, задача разрешима только в том случае, если присутствует не более двух горючих компонентов. В природных газах их может быть четыре и больше. Метод общего сжигания не только не может дать удовлетворительного результата, но даже искажает содержание других частей смеси, если пытаться пересчитывать результаты горения, как эффект сжигания бинарной смеси метана и этана. Поэтому следует применять более совершенный метод анализа. [c.70]

    Методы переработки нефти для получения моторного топлива связаны с крекированием ее компонентов, т. е. разложением сложных молекул углеводородов на более простые в результате их нагрева. Целевое назначение такого крекинг-процесса обычно заключается в увеличении выхода углеводородов Се 4- С , являющихся основными составляющими бензина и керосина. Однако при крекинге часть сложных углеводородов, из которых состоит нефть, распадается так, что продукты разложения содержат и простейшие углеводороды предельные — метан, этан, пропан и бутаны и непредельные — этилен, пропилен, бутилены. Эти газообразные продукты нефтепереработки носят название крекинг-газа, который и является источником получения сжиженных газов. Выделение из крекинг-газов сжиженных газов в виде смесей индивидуальных углеводородов Сд—С4, а также водорода, этилена, пропилена, бутиленов, изобутана, являющихся сырьем для целого ряда синтетических продуктов и топлив, производится на газофракционирующих установках (ГФУ). Установки ГФУ являются обязательным элементом любого современного крупного нефтеперерабатывающего завода. [c.4]


    Состав нефти различных месторождений неодинаков. Грозненская, ферганская и западноукраинская нефти содержат значительное количество предельных углеводородов, бакинская и эмбенская — состоят в основном из циклических углеводородов, североамериканская — исключительно из предельных углеводородов, уральская — содержит большое количество ароматических углеводородов, а также циклических, главным образом циклопентана и циклогексана. [c.302]

    Подобными же изменениями объема может сопровождаться также смешивание некоторых других составных частей нефти, в частности предельных углеводородов с ароматическими. [c.42]

    Углеводороды, входящие в состав нефти, не одинаковы но химическои" й ри )571 67 5ни отличаются друг от друга различным содержанпем углерода и водорода в молекуле, а также строением люлекулы. В нефти содержатся углеводороды 1) парафиновые (насыщенные, или предельные), пли алканы 2) нафтеновые, или цнкланы 3) ароматические. В некоторых нефтях содержатся незначительные количества непредельных углеводородов, но такие нефти очень редки. [c.7]

    Много внимания уделялось определению состава нефтей. Так, Менделеев выделил из нефтей пентан и гексан. Бейльштейн и Курбатов, изучая состав низкокипящих дистиллятных фракций нефти, обнаружили наличие в них соединений общей формулы СпНгп, обладающих свойствами предельных углеводородов. Исследование фракций кавказских нефтей Марковниковым и Оглоб-линым показало, что такие соединения содержатся в кавказских нефтях в значительных количествах и представляют собой новый класс циклических углеводородов, названный ими нафтенами. Марковников показал, что нафтены в основном содержат шестичленные кольца, но число углеродных атомов в кольце может быть отличным от шести. Работы по исследованию нафтенов были продолжены Зелинским и его учениками Наметкиным, Казанч ским и др. С целью более тщательного изучения химических свойств, а также для идентификации выделенных из нефтей углеводородов Марковников и особенно Зелинский синтезировали [c.4]

    Окисление углеводородов. Этот метод получения карбоновых кислот представляет большой практический интерес, так как углеводороды являются доступным сырьем. Непредельные углеводороды, как известно (стр. 73), могут легко окисляться с распадом молекулы по месту двойной связи в качестве продуктов окисления при этом получаются и кислоты. Предельные углеводороды окисляются также с распадом молекулы, но значительно труднее, причем разрыв углеродной цепи может происходить в различных ее местах поэтому в результате образуются сложные смеси карбоновых кислот. В настоящее время разработано каталитическое окисление предельных углеводородов кислородом воздуха при умеренных температурах при этом наблюдается значительно меньший распад цепей и образуются главным образом высшие жирные кислоты. Так, из высокомолекулярных углеводородов нефти (пара(1зина) получают высшие жирные кислоты (стр. 54). [c.162]

    Михаил Иванович Коновалов (1858—1906) окончил в 1884 г. Москов ский университет. В 1896—1899 гг.—профессор Московского сельскохозяйственного института, с 1899 г.—профессор Киевского Политехнического инсти-гута. Первые работы М. И. Коновалова были посвящены изучению природы кавказской нефти. Он разработал методы выделения, очистки и получения различных производных нафтенов (стр. 545), изучал действие брома и бромистого алюминия на нафтены. В 1888 г, Коновалов открыл нитрующее действие разбавленной азотной кислоты при нагревании ее с предельными углеводородами (стр. 358). Исследования в этой области он обобщил в докторской диссер гации Нитрующее действие азогной кислоты на углеводороды предельного ха рактера (1893). Предложенный им метод позволил получить и исследовать многочисленные новые нитросоединения. М. И. Коновалов разработал способ получения из нитросоединений оксимов (стр. 194), спиртов, альдегидов и кетонов, Он использовал также реакцию нитрования для определения строения углеводородов, создал метод разделения нитросоединений и их очистки [c.56]

    Как показали наблюдения с помощью электронного микроскопа, а также опыты по центрифугированию нефти, диспергированные в последней асфальтены представляют собой частицы размером от 4x10 мм и выше. Частицы асфальтенов окружены сольватными слоями, состоящими иэ молекул углеводородов. Сольватные слои препятствуют слипанию и укрупнению частиц асфальтенов. Следовательно, нефть представляет собой лнофнльную коллоидную систему. (Лиофильность - означает хорошее (часто полное) смачивание, малое межфазное натяжение, устойчивость поверхностей к взаимному слипанию.) Как и все коллоидные системы дисперсия асфальтенов нефти не является агрегатив-но устойчивой. При изменении условий частицы асфальтенов могут слипаться, образуя более крупные агрегаты вплоть до полной коагуляции и выпадения в осадок. Толщина сольватного слоя вокруг частиц асфальтенов сильно зависит от состава дисперсионной среды. При большом содержании в нефти смол и ароматических углеводородов толщина слоя наибольшая. При добавлении в нефть предельных углеводородов толщина сольватного слоя быстро уменьшается и при некоторой концентрации в нефти таких предельных углеводородов асфальтены коагулируют и выпадают в осадок. Этим пользуются для выделения из нефти асфальтенов с целью определения содержания их в нефти. Для высаживания асфальтенов в нефть добавляют петролейный эфир, представляющий смесь пентана и гексана. Замечено, что коагуляция асфальтенов начинается уже при добавлении в нефть петролейного эфира в количестве 1 1. [c.7]

    Синтезы из олефиновых углеводородов более разнообразны, чем из предельных углеводородов. Это объясняется большей реакционной способностью олефиновых углеводородов, обусловленной наличием в их молекуле двойной связи. Источником олефинов могут служить газы крекинга и пиролиза нефти, содержащие 30—50% ненасыщенных углеводородов, а также этиленовые фракции коксового газа, получаемые при выделении из коксового газа водорода (стр. 91) методом фракцинированной конденсации в условиях низких температур. В этиленовых фракциях содержится 25—40% этилена. Олефиновые углеводороды образуются также в процессе пиролиза предельных углеводородов природных газов. [c.267]

    Углеводороды с большим молекулярным весом образуют главную массу нефти. В состав пенсильванской нефти (США) входят предельные углеводороды. Грозненские, сураханские, ферганские и западноукраинские нефти также богаты предельными углеводородами. Бакинская нефть состоит, главным образом, из циклопарафинов-углеводородов, имеющих циклическое строение молекул, но близких по свойствам к предельным углеводородам. [c.30]

    Состав углеводородов и других веществ в нефти различных месторождений не одинаковый. Например, нефть канадская, пенсильванская (США), у нас — грозненская и дрогобычская богата предельными углеводородами (парафинами, алканами) бакинская (СССР) и калифорнийская (США) нефти содержат в значительных количествах циклопарафины или нафтены (цик-лоалканы) нефть пермская и майкопская, а также нефть с островов Борнео и Суматры особенно богата ароматическими углеводородами в частности, нефть с Борнео содержит их до 39%. Нафтеновых кислот много содержит наша нефть, а также Польши и Румынии. [c.41]

    При ближайшем исследовании химического состава нефтей, эфирных масел и некоторых других природных веществ давно уже определилась обширная группа органических соединений, занимающих по своему составу и свойствам промежуточное положение между жирным и ароматическим рядами. По своим химическим свойствам соединения эти очень близки к представителям соответствующих 1шассов жирного (алифатического) ряда в строении же их на основе их состава, методов получения и некоторых превращений пришлось принять одну из характерных особенностей ароматического ряда — кольчатое или циклическое расположение атомов углерода. Соединения эти получили название алициклических. Их простейшими представителями являются нафтены — алициклические углеводороды предельного характера, называемые иногда также циклопарафинами. [c.178]

    Приступая к описанию естественных нафтенов, поставим прежде всего вопрос не находится ли в нефти простейший алицикл ический углеводород предельного характера — циклопропан Для выяснения этого вопроса В. В. Марковников [3] исследовал газообразные углеводороды нефти, содержавшиеся в специально приготовленном погоне бакинского бензина с температурой кипения до 50°. Фракционировка этого погона велась в холодном помещении длинный холодильник был соединен с приемником, охлаждавшимся холодной водой. Газообразные продукты, не сгущавшиеся в приемнике, поступали из него последовательно в три промывные склянки, наполненные до половины олеонафтом, и в склянку с бромом. Непогло-тившиеся газы собирались в газометр. Из нескольких сот литров получилось лишь весьма незначительное количество бромюра олеонафт также поглотил очень немного газа. Около 10 л газа из газометра были оставлены на 4 суток с дымящей иодистоводородной кислотой при комнатной температуре. Никакого поглощения не произошло, и кислота по разбавлении водой не показала присутствия иодюра. Следовательно, газ, заключавшийся в исследованном погоне бакинской нефти, циклопропана не содержал в противном случае от взаимодействия циклопропана с иодистым водородом должен был получиться подпетый пропил. [c.183]

    Акцизные смолы отнюдь пе представляют собой какого-либо особого вида смоли стых веществ. При обработке нефти или нефтепродукта серной кислотм в указанных условиях в кислотный слой переходят, кроме рассмотренных выше смолистых и асфальтовых веществ нефти, также ее непредельные углеводороды, а частично, несомненно, также и не1соторые высокомолекулярные углеводороды предельного характера. Таким образом, определение акцизных смол, представляя собой совокупность ряда разнообразных процессов физико-химического характера, отнюдь не может служить для характеристики содержания в нефтепродукте одних смолистых и асфальтовых веществ. Научная ценность таких определений весьма ограничена и условна, и такое заключение вполне оправдывается существованием описанных в литературе явно парадоксальных случаев, когда акцизная проба имеет отрицательное значение, очевидно за счет растворимости кислого гудрона в бензиновом растворе нефтепродукта, или когда содержание акцизных смол получается явно преувеличенным, например больше 100%, очевидно за счет перехода в кислый гудрон части бензинового раствора. [c.265]

    Из углеводородов предельного ряда С Н.2 з необходимо отметить парафины, являющиеся наиболее гидрофобной составной частью нефтей. Свойствами парафинов обладают также циклические углеводороды С Н., , в особенности насыщенные алицикли- ческие углеводороды (нафтены). [c.43]

    Нефть содержат главным образом углеводороды предельные ( парафины, или алканы,—от. метана до тверды.х) С,,Н,,,+.,, нафтены (цик-ланы) СдНгп (моноциклические ряд циклопеитана и циклогексана, би-циклическ1 е и др.), ароматические (бензол, толуол, ксилолы и др.). В состав нефти входят также кислородные (нефтяные кислоты и др.). серосодержащие азотистые органические соединения, минеральные вещества (обычно <0,1%). [c.200]

    В. В. Марковников, изучая углеводородный состав нефтей, обнаружил в кавказской нефти, особенно в ее низкокипящих фракциях, присутствие небольших количеств предельных углеводородов открытого строения. Еще Д. И. Менделеев указал на наличие в кавказской нефти нормальных пентана и гексана. В. В.Марковников же доказал присутствие в этойнефтд изопентана и тетраметилметана, а также выделил из нее нормальный гек-сан [175]. > [c.115]

    Жирный газ, СОСТОЯЩИЙ преимущественно из предельных углеводородов, поступает с установок первичной переработки нефти АТ и АВТ, гидрокрекинга, каталитического риформинга и некоторых других. Жирный газ, состоящий из непредельных углеводородов, поступает с установок каталитического и термического крекинга, пиролиза и коксования. Состав сырья определяет режим процесса, причем это влияние состава сырья одинаково при фракционировании предельных и непредельных углеводородов. Наибольшее влияние на работу фракционирующего абсорбера оказывает изменение концентрации углеводородов С1 — Сд в жирном газе. Например, с повышением содержания углеводородов Сз в сырье необходимо увеличить расход абсорбента на 10—15 (масс.). Кроме того, следует повысить расход водяного пара в подогревателе колонны для отпаривания большего количества пропана и усиления режима охлаждения при конденсации паров с верха этой колонны, а также перевода питания кйлонны на лежащие выше тарелки. [c.59]

    Обтпе способы получения предельных углеводородов. Предельные углеводороды встречаются в природе в составе горючих газов, а также нефти. Эти вещества являются источниками для получения других углеводородов. [c.286]

    Все вышеописанные пять способов адсорбционной хроматографии применяются при исследовании состава нефтей и нефтепродуктов. Первый способ (механическое разделение столбика адсорбента) был применен Фёрби [42—43] для адсорбционного фракционирования нефтяных остатков. Второй и особенно третий способы (элюентная и вытеснительная хроматография) после работ Мэйра и Форциати [44—45] нашли широкое применение для разделения бензинов, лигроинов и керосинов на фракции ароматических и предельных углеводородов, а также частично — для выделения непредельных углеводородов. Четвертый способ (комбинированное применение элюирования и вытеснения) после работ Липкина с сотрудниками [39] применяется для адсорбционного разделения более высоко-кипящих нефтяных фракций. И, наконец, пятый способ (фронтальный анализ) широко применяется для определения адсорбционной активности адсорбентов, адсорбируемости углеводородов и для снятия изотерм адсорбции. [c.47]

    Керосин, веретенные масла и цилиидрогзые масла разлагаются в присутствии хлористого алюминия при 150°, причем нафтены переходят в парафины, ароматику и остаточные асфальтены [56]. Механизм реакции между керосином и хлористым алюминпем зависит от происхождения и состава нефти. Ациклические предельные углеводороды распадаются на легкие газообразные или жидкие парафины и ненасыщенные соединения, которые могут полимеризоваться с образованием высших предельных углеводород дов. Для указанных ациклических углеводородов возможны также процессы изомеризации и циклизации. Ароматические ух леводороды могут разлагаться или же в присутствии олефинов подвергать алкилированию. Непредельные углеводороды могут полимеризоваться с образованием циклических соединений, которые в свою очередь при температуре выше 150° разлагаются олефины могут также соединяться с менее сложными ароматическими углеводородами с образованием высших гомо.югов. Нафтены наиболее устойчивы, но при температуре выше 150° они могут превращаться в предельные соединения, а при температуре выше 370° реагировать с образованием ароматики и непредельных угловодородов [57]. [c.835]

    Характерными примерами дискретных смесей в нефтегазопере-работке являются газообразные смеси легких углеводородов. Например, при первичной перегонке нефти получаются углеводородные газы, состоящие только из предельных углеводородов от метана до пентана, а в процессах вторичной переработки нефти — газы, состоящие из предельных и непредельных углеводородов. К дискретным смесям относятся также жидкие смеси небольшого числа легких углеводородов или узкие нефтяные фракции, например гексановые или гептановые фракции..  [c.17]

    НИИ получения синтетической нефти из органических материалов. Особо значительными в этом отношении являются опыты К. Энглера и его учеников (1888 г.). Исходным материалом для своих опытов К. Энглер взял животные и растительные жиры. Для первого опыта был взят рыбий (сельдевый) жир. В перегонном аппарате К. Крэга при давлении в 10 аттг и при температуре 400°С было перегнано 492 кг рыбьего жира, в результате чего получились масло, горючие газы и вода, а также жир и разные кислоты. Масла было получено 299 кг (61%) уд. веса 0,8105, состоящего на 9/10 из углеводородов коричневого цвета с сильной зеленой флуоресценцией. После очистки серной кислотой и последующей нейтрализации масло было подвергнуто дробной разгонке. В его низших фракциях оказались главным образом предельные. углеводороды — от пентана до нонана включительно. Из фракций, кипящих выше 300° С, был выделен парафин с температурой плавления в 49—51° С. Кроме того, были получены смазочные масла, в состав которых входили олефины, нафтены и ароматические углеводороды, но в весьма небольших количествах. Продукт перегонки жиров под давлением по своему составу отличался от природных нефтей. К. Энглер дал ему название про- топеТролеум . Образование углистого остатка при этом не происходило, чему К. Энглер придавал особое значение, поскольку при перегонке растительных остатков (углей, торфа, древесины) в перегонном аппарате всегда образуется углистая масса. А так как в нефтяных месторождениях не наблюдается более или менее значительных скоплений угля, К. Энглер сделал вывод, что только животные жиры, без остатка превращающиеся в прото-петролиум, могли быть материнским веществом для нефти. Несколько позднее К. Энглер получил углеводороды из масел репейного, оливкового и коровьего и пчелиного воска [ ]. Штадлер получил аналогичные продукты при перегонке льняного семени. [c.311]

    В настоящее время источниками дешевого этилена слун ат огромные количества углеводородных газов, которые образуются п результате крекинга и пиролиза нефти, углей и торфа (табл. 1). Можно использовать не только уже имеющийся этилен, но и тот, который получается при вторичном термическом разложении предельных и непредельных углеводородов указанных газов. Например, при холодной фракциопировке коксового газа выделяется и затем превращается в спирт этилен, содержащийся в количестве до 2 %, а также этан [5 . Последний подвергается пиролизу при 600—800 "С с образованием водорода и этилена, в результате чего ироизводительно( ть спиртовой установки увеличивается на 30 %.  [c.18]


Смотреть страницы где упоминается термин Нефть углеводороды предельные также нефт: [c.140]    [c.74]    [c.303]    [c.88]    [c.364]    [c.496]    [c.183]    [c.266]    [c.380]    [c.158]   
Избранные труды (1955) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Предельные углеводороды

Углеводороды Предельные углеводороды



© 2025 chem21.info Реклама на сайте