Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межмолекулярное притяжение, природа

    С1ЧЛЫ межмолекулярного взаимодействия имеют электрическую природу. На сравнительно больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, проявляется только действие сил притяжения. Еслп молекулы полярны, то сказывается электростатическое взаимодействие их друг с другом, называемое ориентиционным. Оно тем значительнее, чем больше дииольный момент молекул [х. Повыи1ение температуры ослабляет это взаимодействие, так как тепловое движение нарушает взаимную ориентацию молекул. Притяжение полярных молекул быстро уменьшается с расстоянием г между ними. Теории (В. Кеезом, 1912 г.) в простейшем случае для энергии ориентационного взаимодействия дает следующее соотношение  [c.136]


    Однако растворение газов в органических жидкостях нередко сопровождается поглощением теплоты в подобных случаях с ростом температуры растворимость газа увеличивается. Поглощение теплоты в данном случае происходит из-за того, что энергия межмолекулярного притяжения между молекулами растворителя оказывается по модулю больше, чем энергия притяжения между молекулами газа и растворителя в растворе. Растворение происходит за счет увеличения энтропии системы, а молекулы газа, внедряясь между молекулами растворителя, затрачивают энергию на разрыв сил сцепления молекул жидкости между собой. Такие процессы возможны между веществами, резко отличающимися по своей природе неполярным газом и полярной жидкостью и т. п. [c.223]

    Величина точки Крафта зависит от молекулярного строения ПАВ, природы и концентрации добавок. Изменения структуры ПАВ, приводящие к усилению межмолекулярного притяжения в углеводородных областях или в слоях полярных групп, вызывают ее повышение. Так, величина Ткр повышается в гомологических рядах ПАВ по мере роста длины углеводородного радикала (рис. 15). Соединения с разветвленной цепью имеют меньшую величину Т р по сравнению с аналогичными ПАВ нормального строения (при одинаковом количестве атомов углерода в радикале), так как разветвленные цепи менее плотно упакованы и силы когезии между цепями меньше. Заметно снижается Ткр при введении в [c.56]

    Реологические свойства вещества зависят от его природы и физического состояния и проявляются по-разному у веществ в жидком, твердом и промежуточном (переходном) состояниях. Вязкость является результатом межмолекулярного взаимодействия, и она тем выше, чем больше силы молекулярного притяжения. Поэтому вязкость полярных веществ всегда больше, чем неполярных. [c.379]

    Вклад ориентационного, индукционного и дисперсионного эффектов в энергию межмолекулярного притяжения зависит от природы молекул. Например, для молекул СО и НгО соотношения таковы  [c.113]

    Этими двумя слагаемыми межмолекулярное притяжение не исчерпывается. Ориентационные и индукционные взаимодействия составляют лишь часть ван-дер-ваальсовского притяжения, причем для многих соединений —меньшую часть его. Для таких же веществ, как Ые и Аг, оба слагаемых равны нулю (частицы этих веществ неполярны, и их электронные оболочки являются весьма жесткими) тем не менее благородные газы сжижаются. Это свидетельствует о существовании еще одной составляющей межмолекулярных сил. Какова ее природа  [c.241]


    Межмолекулярное притяжение, обусловливаемое силами Ван-дер-Ваальса, представляет собой одно из всеобщих явлений природы. Оно свойственно всем веществам и проявляется в газо- и парообразных, жидком и твердом его состояниях и лежит в основе агрегатного состояния вещества при данных физических условиях. [c.99]

    В газах, реально существующих в природе (в реальных газах), сравнительно небольшие по величине силы межмолекулярного притяжения (силы сцепления) и отталкивания проявляются в большей или меньшей степени в зависимости от температуры и давления. Молекулы реальных газов обладают (хотя и очень малым) собственным объемом, который, наряду с силами сцепления и отталкивания, необходимо учитывать при различного рода расчетах. [c.19]

    Кроме межатомного, внутримолекулярного взаимодействия, обусловленного действием рассмотренных химических (валентных) сил, существует взаимодействие между незаряженными молекулами вещества. Оно вызывается также действием сил притяжения и отталкивания. Межмолекулярное притяжение, обусловливаемое силами Ван-дер-Ваальса, представляет собой одно из всеобщих явлений природы. Оно свойственно всем веществам и проявляется в газо- и парообразных, жидком и твердом состояниях. Силы Ван-дер-Ваальса действуют как между однородными молекулами данного вещества, так и между разнообразными молекулами различных веществ. Хотя эти силы по сравнению с химическими и невелики, они все же способны обеспечивать довольно прочные связи. Это, в частности, наблюдается в молекулярных кристаллах и жидкостях, в целом ряде поверхностных явлений (адсорбция и т. д.). [c.168]

    Работа адгезии при смачивании твердых тел обычно положительна [8, с. 23 ], поскольку между телами любой природы всегда действуют силы межмолекулярного притяжения. Поэтому равновесные краевые углы, как правило, меньше 180° (абсолютное не-смачивание не реализуется). [c.31]

    Сила межмолекулярного притяжения зависит от природы межмолекулярных сил, а также от расстояния между макромолекулами, причем чем расстояние меньше, тем сильнее взаимодействие между цепями. В свою очередь расстояние между цепями зависит от величины боковых групп, порядка их чередования, от степени симметричности молекулы, от наличия и характера ответвлений (длины ответвлений и степени разветвленности). Чем больше длина боковых групп и ответвлений, тем ниже температура плавления полимера и стойкость его к действию растворителей. [c.10]

    Сила нормального давления приводит к деформации поверхностей в местах локальных контактов, при трении скольжения происходит разрушение (отрыв при сдвиге и деформация) этих контактов. Поэтому сила трения зависит не только от механических свойств выступов поверхности, но и от молекулярных сил прилипания. В результате, по Крагельскому, трение имеет двойственную молекулярно-механическую природу. Оно обусловлено механическими потерями при деформации поверхностных выступов (механическая составляющая) и потерями на преодоление межмолекулярных связей (адгезионная составляющая). При этом, по Дерягину, молекулярное взаимодействие обусловлено взаимным притяжением трущихся пар (адгезией) и взаимным внедрением элементов сжатия поверхностей. Следовательно, вопрос о сближении поверхностей и фактической площади их касания является весьма важным при рассмотрении трения и износа. [c.355]

    Силы межмолекулярного взаимодействия имеют электрическую природу. Они характеризуют электростатическое притяжение или отталкивание, возникающее между полярными молекулами и неполярными, в которых возникают диполи под действием внешних факторов. Такие силы называют силами Ван-дер-Ваальса (в честь ученого, который предложил уравнение состояния газа, учитывающее межмолекулярное взаимодействие). [c.144]

    В зависимости от природы взаимодействующих молекул выделяют три составляющих межмолекулярного взаимодействия. Так, при взаимодействии двух полярных молекул, т. е. при наличии у микрочастиц постоянного электрического момента диполя Р, возникает электростатическое притяжение, называемое ориентационным [c.23]

    С повышением температуры растворимость компонентов масляных фракций в полярных растворителях увеличивается и при критической температуре растворения (КТР) наступает полное растворение их в данном количестве растворителя. При растворении компонентов масляных фракций в избирательных растворителях при температурах как выше, так и ниже КТР, система находится в жидком состоянии, т. е. и в том, и в другом случае энергия межмолекулярного притяжения больше энергии теплового движения молекул. Образование однофазной системы при темле-ратурах выше КТР объясняется тем, что в этих условиях кинетическая энергия молекул достаточна для преодоления различия в энергиях межмолекулярного притяжения однотипных молекул компонентов, входящих в состав масляной фракции, и взаимного притяжения молекул самого растворителя [4]. При температурах ниже КТР т-0пловое движение молекул превышает силы притяжения молекул не всех компонентов масляной фракции, в результате чего система разделяется на две жидкие фазы. Критическая температура растворения зависит от структуры углеводородов и природы растворителя. [c.48]


    Фрактография, т. е. исследование морфологии поверхности разрушения, является очевидным способом выявления природы треш,ины и типа ее распространения. В настояпдей монографии в соответствующих разделах уже анализировались поверхности разрушения волокна (разд. 8.1.7) и других видов образцов. В данном разделе необходимо дать некоторые пояснения, особенно по поводу влияния длины цепи и межмолекулярного притяжения на морфологию поверхности разрушения. [c.390]

    Основным объектом изучения в химии координационных соединений являются ионы и молекулы, состоящие из центральной частицы и координированных вокруг нее лигандов (аддендов). Строго говоря, понятие комплексные соединения шире, чем понятие координационные соединения . Оно включает в себя также молекулярные комплексы, в которых невозможно указать центр координации, а также соединения включения. Тем не менее, координационные соединения часто называют просто комплексами, и мы тоже будем следовать этой традиции. Как правило, центральной частицей ( ядром координации) является катион металла или оксокатион типа 1)022+, д лигандами могут быть ионы либо молекулы неорганической, органической или элементоргани-ческой природы. Друг с другом лиганды либо не связаны и взаимно отталкиваются, либо соединены силами межмолекулярного притяжения типа водородной связи. Совокупность непосредственно связанных с ядром лигандов называют внутренней координационной сферой. [c.11]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Химия координационных соединений является частью неорганической химии, охватывающей как чисто неорганические соединения, так и соединения, содержащие лиганды органической природы. Лиганды, как правило, не связаны друг с другом и между ними действуют силы отталкивания. Между лигандами могут возникать силы межмолекулярного притяжения типа водородной связи. С центральным атомом лиганды могут быть связаны дву центровыми а-, тг- и 8-связями и многоцентровыми связями. При двуцентровых связях ядро— лиганд можно указать атомы лиганда, через которые связь осуществляется. Обычно эти атомы называют донорными. [c.4]

    Из теории Флори — Хаггинса следует, что растворение полимера в хороших растворителях сопровождается существенным уменьшением энергии Гиббса, что обусловлено как выделением теплоты (ДЯ<6), так и ростом энтропии. В таких системах Лг > О и % < 7г (отрицательное отклонение от идеальности). Это означает, что силы отталкивания между макромолекулами в растворе полимера обусловлены энтропийной составляющей и взаимодействием с растворителем. В плохих растворителях (Лг < 0) происходит поглощение теплоты (АН >0), и силы оттал14Ивання между макромолекулами имеют исключительно энтропийную природу рост энтропии полностью перекрывает рост энергии Гиббса вследствие межмолекулярного взаимодействия. В этих системах возможно достижение температуры Флори (положительная энтальпия смешения компенсируется избыточной энтропией), ниже которой доминируют силы притяжения между макромолекулами (Лг < 0). [c.324]

    В основе макроскопической теории молекулярного взаимодействия конденсированных фаз лежит представление о существующих в них флуктуациях электромагнитного поля, которые выходят за пределы фаз и, взаимодействуя в зазоре между кнми, создают силы межмолекулярного притяжения. Квантовый характер подобных флуктуаций приводит к тому, что основной вклад во взаимодействия создают так называемые нулевые колебания, не зависящие от температуры лишь при очень высоких температурах следует учитывать температурную природу флуктуаций. Частотная характеристика флуктуаций электромагнитного поля может быть найдена из оптических свойств конденсированной фазы — из зависимости от частоты ы коэффициентов истинного (не связанного с рассеянием света см. 1 гл. VI) поглощения света в контактирующих фазах. [c.249]

    Межмолекулярные силы, удерживающие вместе частицы жидкости и молекулы твердого вещества, имеют электрическую природу. Межмолекулярные силы вызваны дисперсионным взаимодействием, взаимодействиями типа диполь-диполь, диполь-индуцированный диполь, ион-диполь, ион-индуцированный диполь. Дисперсионные силы действуют между ионами, атомами и молекулами независимо от наличия у них зарядов или постоянных дипольных моментов. Относительный вклад остальных типов взаимодействия в межмолекулярное притяжение зависит от ряда физических свойств конкретного вещества дипольного момента, энергии ионизации, поляризуемости, структурных особенностей, молярной массы. Межмолекулярные силы принадл ат к дальнодействующим силам и изменяются по закону /, ще I — расстояние между центрами тяжести взаимодействующих частиц. [c.112]

    Устойчивость и коагуляция связаны непосредственно с взаимодействием частиц дисперсной фазы между собой или с какими-либо макроповерхностями. Это взаимодействие также определяет адгезию частиц к макроповерхностям и структурообразование в дисперсных системах. Поэтому в основе любой теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Существует единое мнение в отношении природы сил притяжения, которые обусловлены межмолекулярными силами Ван-дер-Ваальса. Силы же отталкивания между частицами могут иметь разную природу, соответствующую факторам устойчивости. Предложено несколько теорий, объясняющих те или иные экспериментальные факты с различных позиций (Дюкло, Фрейндлих, Мюллер, Рабинович, Оствальд и др.). Однако все эти теории были односторонними, они не учитывали и не объясняли многие факты. Создание общей количественной теории устойчивости дисперсных систем оказалось крайне трудной задачей. [c.325]

    Адгезия (от лат, ас1Ьае51о - притяжение, сцепление, прилипание) -явление соединения приведенных в контакт поверхностей конденсированных, Адгезия зависит от природы контактирующих раз, свойств их поверхностей и площади контакта. Адгезия определяется силами межмолекулярного притяжения и усиливается, если одно или два тела электрически заряжены, если при контакте тел образуется донорно-акцепторная связь, а также вследствие капиллярной конденсации паров. Частный случай адгезии - аутогезия или когезия (для жидкости), реализуемая при молеку лярном контакте двух оданаковых по составу и строению объектов. [c.90]

    Силы Ван-дер-Ваальса. Очень слабые силы притяжения между нейтральными атомами или молекулами, проявляюищеся на расстояниях, превосходяпщх размеры частиц, называют межмолекулярным притяжением или силами Ван-дер-Ваальса. Они действуют в веществах, находян хся в газообразном или жидком состоянии, а также между молекулами в молекулярных кристаллах. Ван-дер-ваальсово притяжение имеет электрическую природу и рассматривается как результат действия трех эффектов — ориентационного, индукционного и дисперсионного  [c.98]

    Силы межмолекулярного притяжения зависят от природы молекул, расстояния между макромолекулами. Расстояния определяются величиной боковых групп, симметричностью молекул, степенью разветвленности. Чем больше длина боковых групп и ответвлений, тем ниже тсмлература плавления полимера и меньше его устойчивость к действию растворителей. [c.58]

    Согласно этой теории основная причина устойчивости пен не связана с замедлением утоньшения или растяжения их пленок за счет вязкости или квазиэластичности. Можно получить термодинамически устойчивые пленки пен, для которых растягивающие силы полностью скомпенсированы расклинивающим давлением. Последнее может быть вызвано деформацией диффузионных электрических слоев или ван-дер-ваальсовыми межмолекулярными силами. Первый тип расклинивающего давления препятствует утоньшению пленки и называется положительным расклинивающим давлением. Второй тип расклинивающего давления, обусловленный межмолекулярным притяжением, способствует растяжению пленки — отрицательное расклинивающее давление. При малых концентрациях электролита устойчивость пен может быть объяснена на основе положительного расклинивающего давления. Однако при более высокой концентрации электролита (0,2 М), когда диффузионные части двойных электрических слоев полностью подавлены, устойчивость пен сохраняется, но толщины образующихся слоев порядка 10 см указывают на наличие сил отталкивания иной природы. Это показывает, что для объяснения устойчивости пен недостаточно одного электростатического давления. Дерягин [И] считает, что при высоких концентрациях электролита имеется специфическая структура адсорбционных слоев пленки, придающая ей устойчивость и свойства особой граничной фазы. [c.24]

    Взаимное притяжение молекул. Природа сил взаимного притяжения между молекулами носит сложный характер. Важным этапом в развитии наших знаний о природе сил межмолекулярного притяжения являются исследования известных русских физиков П. А. Лебедева и Б. Б. Голицына, которые положили в основу своих работ представление о молекулах как о взаимодействующих электрических микровибраторах. В 1894 г. Б. Б. Голицын рассматривал это притяжение как результат взаимодействия согласованных электромагнитных колебаний, вызываемых колебаниями,, происходящими в самих молекулах, и показал, что такое взаимодействие должно приводить к взаимному притяжению молекул и что энергия его обратно пропорциональна шестой степени расстояния. [c.121]

    Температура размягчения (плавления) полимера, от которой в первую очередь зависит его теплобтойкость, тесно связана с строением мономерного звена макромолекулы, с природой атомов, входящих в ее состав, со строением ее цепи и со структурой полимера в целом. Введение в цепь циклов, повышающих ее жесткость, и групп, усиливающих межмолекулярное притяжение (группы, обусловливающие возникновение водородной связи, полярные заместители), увеличивает температуру размягчения. Большое значение также имеет регулярность строения макромолекул, обеспечивающая хорошую упаковку их и кристаллизацию полимера однако во избежание хрупкости необходимо, чтобы в состав полимера входила наряду с жесткими структурными элементами известная доля гибких. [c.238]

    При сближении двух тел до расстояний, сопоставимых с дальностью действия межмолекулярных сил, между ними возникают поверхностные силы взаимодействия, которые действуют лишь в сфере молекулярного поля и на расстояниях от поверхности раздела, превышающих радиус этой сферы, равны нулю. Эти силы, являющиеся следствием ненасыщенности межмолекулярных сил на поверхности фаз и зависящие от природы когезионных сил в фазах, всегда выступают как силы притяжения. Ненасыщен-ность межмолекулярного взаимодействия на внешней поверхности частицы приводит к образованию избыточной поверхностной энергии между фазами. Наличие определенного избытка свободной энергии, сосредоточенной в поверхностньге слоях на границе раздела фаз и пропорциональной этой поверхности, обусловливает стремление любых дисперсных систем занять минимальную поверхность раздела фаз. Следствием такого свойства дисперсных систем является стремление в изотермических условиях жидких частиц к коалесценции и твердых частиц к агрегированию, сопровождающихся понижением свободной поверхностной энергии пропорционально убыли поверхности. Термодинамически поверхностную энергию можно характеризовать через уравнение для внутренней энергии и=Р+Тз. Применительно к процессу образования новой поверхности и есть поверхностная энергия, Р - свободная энергия образования поверхности и Тз - тепловой эффект процесса, где 8 = с1Р МТ - температурный коэффициент свободной энергии образования поверхности. Известно, что внутренняя энергия системы является результатом взаимодействия частиц и их кинетической энергии. В изотермических процессах определяемая температурой кинетическая энергия частиц остается постоянной, поэтому все изменения внутренней [c.93]

    В связи с тем, что взаимодействующие молекулы находятся на несколько больших расстояниях, выбор правильной волновой функции представляет очень трудную задачу. Во-первых, значения волновой функции в этой области малы, что предъявляет особые требования к точности ее определения. На таких расстояниях часто играют роль не валентные орбитали, а внешние, вакантные в основном состоянии орбитали. Во-вторых, межмолекулярные взаимодействия по своей природе являются многочастичными и необходимо рассматривать сразу крупные объединения частиц — их ансамбли . Причем каждая из частиц должна быть определенным образом расположена и ориентирована в пространстве. Это резко увеличивает объем вычислительной работы. Наконец, теоретические и расчетные методы еще не позволяют прн современном уровне развития вычислительной техники получить достаточно точное решение. Для обеспечения притяжения молекул особое значение приобретает корреляция электронов. Под корреляцией электронов понимаюч такое коллективное движение, когда они как бы стараются избегать друг друга и больше находиться в поле положительного заряда. Корреляция электронов представляет собой самостоятельную и сложную задачу квантовой химии. Поэтому теоретические квантово-химические методы в настоящее время используются наряду с подходами, основанными на законах классической физики. [c.152]

    Второй род сил, влияющих на устойчивость золя,— силы притяжения между частицами. Они имеют ту же природу, что и силы, действующие между нейтральными молекулами. Существованием этих сил Ван-дер-Ваальс объяснял свойства реальных газов и жидкостей. Возникновение межмолекулярных сил обусловлено взаимодействием диполей (эффект Кеезома), поляризацией одной молекулы другой (эффект Дебая) и особого рода взаимодействием, которое объяснимо в рамках квантовой механики. Последний тип сил, называемых дисперсионными силами Лондона, связан с наличием в нейтральных атомах и молекулах мгновенных диполей. Взаимодействие таких диполей, являющихся результатом движения электронов в атомах и молекулах, не зависит от постоянных диполей и служит причиной их взаимного притяжения. Ф. Лондон показал, что такой тип взаимодействия превосходит эффекты Кеезома и Дебая. Энергия лондонозского взаимодействия между двумя атомами, находящимися на расстоянии г, обратно пропорцио- [c.112]

    Водородная связь. Особый вид связи — водородная связь наблюдается при взаимодействии атома водорода с атомами сильно электроотрицательных элементов (Р, О, Ы, реже С1 и 5). Природа водородной связи до конца не выяснена. Она не является ни ковалентной, ни тцной. Некоторые исследователи считают, что ее природа ближе к. природе межмолекулярных сил притяжения. Однако в действительности водородная связь не может быть сведена к ван-дер-ваальсовым силам, так как очевиден и ее электростатический характер. Она образуется вследствие притяжения между ковалентно связанным атомом водорода (протон) и свободными электронами электроотрицательного атома другой молекулы, как это видно на примере молекул воды [c.35]

    Межмолекулярное взаимодействие имеет электрическую природу и складывается из вандерваальсовых сил притяжения (ориентационных, индукционных, дисперсионных) и сил отталкивания. [c.124]


Смотреть страницы где упоминается термин Межмолекулярное притяжение, природа: [c.215]    [c.234]    [c.25]    [c.299]    [c.42]    [c.324]    [c.35]    [c.281]    [c.56]    [c.526]    [c.324]    [c.66]    [c.254]   
Химия коллоидных и аморфных веществ (1948) -- [ c.20 , c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Межмолекулярные

Природа межмолекулярных сил



© 2024 chem21.info Реклама на сайте