Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптические антиподы абсолютная конфигурация

    В последние годы найдены методы физического исследования пространственного строения асимметрических молекул, позволившие установить для ряда соединений абсолютную конфигурацию оптических антиподов, т. е. действительное пространственное расположение групп в правовращающем и левовращающем изомерах. Оказалось, что абсолютные конфигурации (+)- и (—)-глицериновых альдегидов совпадают с первоначально принятыми условными конфигурациями 0(+)- и (—)-глицериновых альдегидов. Отсюда следует, что и относительные конфигурации D(—)- и (+)-молочных кислот, так же как относительные конфигурации других соединений D- и -рядов, правильно отражают действительное пространственное строение и являются их абсолютными конфигурациями. [c.204]


    Определение абсолютной конфигурации молекул необходимо при изучении оптической активности химических соединений. Важно знать, с какой абсолютной конфигурацией связан тот или иной знак вращения плоскости поляризации в растворе оптически активного соединения. Определение абсолютной конфигурации для какого-либо одного соединения позволяет судить о конфигурации и его производных продуктов реагирования и связывать их строение с их оптической активностью. Подразумевается, конечно, что в процессе реагирования не происходит изомеризации — переход ко второму структурному антиподу. Но, как правило, те вещества, которые удается изолировать в растворах в виде оптических изомеров, обладают высоким потенциальным барьером перехода в свои антиподы. Поэтому опасность изомеризации в процессе реагирования относительно невелика. [c.134]

    Вскоре, однако, выяснилось, что знак вращения — признак неустойчивый. Существуют вещества, меняющие знак вращения в зависимости от условий (растворитель, температура, концентрация), в которых проводится поляриметрическое определение. Так, например, водный раствор природной яблочной кислоты при концентрации 70—50 % имеет правое вращение, при концентрации ниже 25 % — левое. Раствор природной аспарагиновой кислоты в воде при комнатной температуре вращает вправо, а выше 75 "С приобретает левое вращение. Таким образом, конфигурация непосредственно не связана со знаком вращения, последний — только признак единственный в случае пары оптических антиподов, один из признаков при сопоставлении пары диастереомеров ), позволяющий отличить друг от друга пространственные изомеры. Когда это стало ясным, появилась потребность обозначать не просто знак вращения, а конфигурацию оптически активных веществ, т. е. отражать в названии особенности пространственного строения молекулы данного стереоизомера, отличающего именно этот стереоизомер от других. Потребность эта появилась, однако, в то время, когда еще не умели определять абсолютную конфигурацию. [c.295]

    Способа определения абсолютной конфигурации оптически дея-гельного вещества в настоящее время нет. Поэтому, если, например, имеется один из антиподов глицеринового альдегида, нельзя решить, отвечает ли ему формула (I) или (И)  [c.691]

    При первом же знакомстве с оптически активными веществами появилась необходимость сравнения расположения атомных групп вокруг центров асимметрии как у пар антиподов, так и у различных групп аналогично построенных стереоизомеров (сахаров, аминокислот и т. д.) для их классификации. Решение первой задачи — определение пространственного расположения групп у каждого антипода, т. е. определение абсолютной конфигурации, долгие годы казалось неразрешимым. Такие физические методы, как определение дипольных моментов, рентгеноструктурный анализ и другие, которые давали прекрасные результаты для различения цис- и /пранс-изомеров, в случае антиподов оказались бессильными, потому что в них расстояния между любой парой атомов или группами атомов одинаковы. [c.13]


    В последнее время к проблеме определения абсолютной конфигурации пытались подойти экспериментальным путем, а именно с помощью рентгенографического исследования соответствующих веществ [341, 342]. При определенных условиях оптические антиподы дают различные рентгенограммы (по Лауэ), так что при снятии рентгенограмм двух подходящих энантиоморфных кристаллов при одинаковом направлении полярной оси получают несимметричные лауэграммы, относящиеся друг к другу как предмет к своему зеркальному изображению. [c.123]

    Равновесное расположение атомов в молекулах, иными словами, равновесное расположение атомных ядер определяет общую геометрическую структуру ядерного скелета молекулы. Такой скелет характеризуется определенными свойствами симметрии и может рассматриваться как система фиксированных точек. Изомерные (в том числе поворотно-изомерные) структуры имеют совершенно определенные различия в геометрической конфигурации. Структура скелета определяется прямыми методами рентгено-, электроно- и нейтронографии, а также методами инфракрасной и радиоспектроскопии и косвенно — на основании изучения других физических явлений. Здесь имеется ряд проблем, далеких от своего полного решения, таких, например, как определение абсолютной конфигурации оптических антиподов. [c.132]

    Конфигурация асимметрического центра не являе-гся абсолютно жесткой. Многие оптические изомеры, предоставленные сами себе, постепенно претерпевают ауторацемизацию, превращаясь в смесь оптических антиподов. Особенно склонны к реакции рацемизации углеводы. Здесь она осложнена влиянием других асимметрических центров молекулы, поэтому состояние равновесия обычно не достигает соотношения 1 1. Если динамическая стереоизомерия затрагивает первый углеродный атом молекулы углевода, то говорят об йномеризации, которая протекает через открытую аль-форму  [c.112]

    Надежной основой для определения конфигурации оптически активных соединений с асимметрическим атомом углерода являются данные специального рентгенографического анализа с использованием тяжелого атома, вводимого в молекулу. При этом используют Рентгеновы лучи с длиной волны, близкой к краю рентгеновского поглощения тяжелого атома, введенного в молекулу в качестве метки. В результате на обычную дифракцию накладывается фазовый сдвиг и рентгенограммы оптических антиподов становятся неидентичными. За два десятка лет, прошедших со времени открытия рентгеноструктурного метода определения абсолютной конфигурации соединений, благодаря применению автоматических дифрактометров и ЭВМ рентгенографические исследования существенно упростились, а время, необходимое для их проведения, существенно сократилось. [c.186]

    С помощью большинства других методов определения абсолютной конфигурации можно различать диастереоизомеры и неэнантиомерные конформации, но не оптические антиподы. Это относится к конформационному анализу (гл. 3), ядерному магнитному резонансу (гл. 6) и ИК- и КР-спектроскопии (гл. 7). Тем не менее они очень полезны для определения абсолютной конфигурации. [c.28]

    Изомеры А и В называются оптическими антиподами, или энан-тиомерами. Их химические свойства одинаковы, а из физических свойств различие только во вращающей способности. Действительно, они вызывают вращение плоскости поляризации плоскополяризован-ного света (см. курс оптики). Абсолютные величины угла вращения одинаковы для обоих антиподов одна из них положительна, другая отрицательна. Говорят, что один антипод является правовращающим, а другой — левовращающим, но а priori нельзя знать, будет ли, например, А правовращающим, а В левовращающим, или наоборот проблема определения абсолютной конфигурации слишком сложна, чтобы рассматривать ее здесь. Смесь равных количеств двух оптических антиподов не оказывает действия на поляризованный свет такая смесь называется рацемической смесью оптических изомеров. [c.79]

    Если, к тому же, применять при этом катализатор, содержащий асимметрическую группу с такой же абсолютной конфигурацией, как у одного из антиподов, наблюдается преимущественная полимеризация его с образованием оптически активного продукта (ОООО или ЬЬЬЬ) — стереоэлектшная полимеризация. [c.197]

    На основании химических соображений нельзя произвести определение абсолютных конфигураций оптических антиподо.в даже сравнительный конфигурационный анализ очень труден из-за возможности инверсии конфигураций в процессе замещения. Теоретические расчеты вращательной способности данных конфигураций и сопоставление результатов расчетов с экспериментальными значениями не вполне однозначны. Такие расчеты предпринимаются для комплексных соединений очень редко, за исключением недавней работы Моффитта [179], рассмотревшего оптическую вращательную способность октаэдрических комплексов переходных металлов тина [М(АА)з] на основании теории кристаллического поля. Полная оптическая вращательная способность соединения (М) может быть разделена на отдельные части (парциальные вращательные способности Му), ассоциированные с отдельными полосами поглощения в спектре комплекса, так что М = Показано 1) что пер- [c.198]


    Абсолютная конфигурация винной кислоты. Как уже отмечалось, обычным рентгеноструктурным анализом кристаллов нельзя определить абсолютную конфигурацию оптического антипода, но это становится возможным при применении подходящего видоизменения метода. На рис. 8 приведена абсолютная конфигурация природной (- -)-винной кислоты, определенная на основании анализа кристалла виннокислого натрия и рубидия рентгеновскими лучами (согласно Ж. М. Бижвоету, [c.151]

    С тех пор абсолютные конфигурации других оптически деятельных соединений рассматривались как соответствующие либо правовращающему, либо левовращающему антиподу глицеринового альдегида, в результате чего возникли два ряда кон-фигуративно родственных соединений — )-ряд и -ряд (см. также стр. 560). При этом корреляция конфигураций различных веществ чаще всего осуществлялась химическим путем. Например, ( + )-глицериновый альдегид был окислен в (—)-глицериновую кислоту, которая была получена также из (-Ь )-изосери-на при его диазотировании ( + )-изосер н в свою О чередь был дезаминирован с образованием (—)-молочной кислоты и получен из ( + )-винной кислоты через (—)-хлоряблочную и ( + )-яб-лочную кислоты  [c.592]

    Наиболее общими абсолютными методами являются расщепление на оптические изомеры, а также получение производных, которые возможны только для одной конфигурации. Так, например, геометрическую конфигурацию двух стереоизомерных 1,3-диметилолцикло-гексанов с темп. кип. 55° (при 0,1 мм) и П4° (при 0,1 мм) можно выяснить, превратив каждый из них в какой-либо оптически деятельный диуретан, а затем выделив оптические антиподы любым из известных способов (см. том I, стр. 506). При омылении уретанов получаются оптически деятельный диол с темп. кип. 114° (при 0,1 мм) и недеятельный диол, кипящий соответственно при более низкой температуре. Таким образом, вышекипящий диол является транс-формой. [c.34]

    Следует иметь в виду, что понятия конфигурация , сохранение конфигурации , инверсия относятся к действительным пространственным отношениям в молекуле, к ее архитектонике, наблюдаемое же оптическое вращение не связано прямо с этими понятиями. Поэтому конфигурация — ее сохранение или обращение — всегда должна быть специально установлена. Для этого вещество при помощи химических реакций, не затрагивающих асимметрический центр, превращают в соединение с известной конфигурацией. В конечном итоге такой прием — определение относительной конфигурации — позволяет сопоставить вещество с В-глицериновым альдегидом. Однако уже ряд лет существуют методы непосредственного определения абсолютной конфигурации это, например, методы дисперсии оптического вращения, кругового дихроизма [22] . Часто можно обойтись без трудоемких методов определения конфигурации, используя метод изотопного обмена (см. ниже) или работая с парами диастереомеров трео- и эритро-фотржы). В этих случаях в самой молекуле имеется внутренний стандарт для сравнения конфигурации и нет необходимости получать оптические антиподы. [c.160]

    Предсказание Вант-Гоффа о том, что соответствующим образом замещенные аллены могут быть расщеплены на оптические антиподы [40], после нескольких неудачных попыток [41] было полностью подтверждено расщеплением [42—45], синтезом с дис-симметрнческими катализаторами [46, 47] и реагентами [48, 49], а также применением реакций оптически активных соединений, содержащих асимметрические атомы [50—53]. Для ряда природных соединений, в основном выделенных из грибов, молекулярная диссимметрия целиком [54—60] или частично [59, 60—66] обусловлена наличием алленово группировки. Абсолютные конфигурации этих соединений были установлены на основе реакций получения алленов из соединений с асимметрическими атомами углерода [51, 67—70] или наоборот [45, 71]. Конфигурации, выведенные на основе гипотез о роли стерических факторов в частичном асимметрическом синтезе [48, 49, 53], следует применять с осторожностью, если они не подтверждены другими данными [48, 49]. Для настоящего исследования особенно важны новые корреляции конфигурации и вращения в длинноволновой области спектра [72], как, например, установление конфигурации 1,3-дифенилаллена на основании его спектра кругового дихроизма [73]. [c.247]

    Проблема установления абсолютной конфигурации координационных соединений возникла с 19П г., когда А. Вернер расщепил на антиподы некоторые комплексы металлов. Эта проблема всегда интересовала химиков-комплексников, поскольку зная абсолютную конфигурацию комплекса, можно объяснить целый ряд интересных явлений, например стереоспецифичность (корреляцию абсолютной конфигурации образующегося комплекса и входящего в его состав диссимметричного лиганда), различие в биологической активности антиподов и т. д. Однако до работы Саито и сотр., которые в 1954 г. первыми определили (специальным рентгеноструктурным методом) абсолютную конфигурацию иона ( +) - [СоеПз] , были известны с больщей или меньшей достоверностью только относительные конфигурации сравнительно небольшого ряда комплексов. Появление доступных чувствительных приборов для измерений в широком интервале дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД), а также увеличение числа ключевых соединений, абсолютная конфигурация которых установлена методом аномального рассеяния рентгеновских лучей (см. гл. 4 настоящей книги), способствовало в последние 10—15 лет интенсивнейшему развитию этой области координационной химии. [c.5]

    В 1937 г. Кондон, Олтер и Эйринг [127], основываясь на факте кварцевого катализа, указалтт новый путь для получения данных, позволяющих судить об абсолютной конфигурации молекул. Как указывалось, кристаллы оптически активного кварца с нанесенной тонкой пленкой металла (Си, N1, Р1, Р(1, Ад), окисла (АЬОз) или щелочи представляют собой катализаторы, способные избирательно разлагать один из оптических антиподов в рацемической смеси или проводить асимметрический синтез. [c.27]

    Знак вращения мономера указывал, что в полимеризацию вовлекается тот антипод (S), который имеет ту же абсолютную конфигурацию, что и оптически активная (8)-2-метилбутиловаягвуп-па в катализаторе, а остающийся избыток мономера имеет (R)-конфигурацию (табл. 46). [c.183]

    Для стероидных соединений разработана в настоящее время удоб(гая и общепринятая номенклатура [125 —127], согласно которой они назьтр.ают-ся как производные нескольких фундаментальных структур (обычно углеводородов), а конфигурация заместителей относительно ангулярных метильных групп обозначается индексами а транс-) и р (цис-). Эти обозначения отвечают также абсолютной конфигурация заместителей. Однагчо эта номенклатура в своей первоначальной форме не позволяет описывать синтетические стероидные соединения, с которыми приходится иметь дело при осуществлении полного синтеза. Дело в том, что существующие правила номенклатуры пригодны для обозначения лишь одной оптически активной формы, а для антиподов или рацематов приходится прибегать к слишком сложным названиям. Это может быть пояснено следуюгдим примером. [c.73]

    Абсолютная конфигурация irJБ не определена максимальное удельное вращение [сг] -В0° (бензол) опредктено расщеплением на антиподы частично оптически активной кислоты при по.люгци хининовой соли. [c.322]

    При первом же знакомстве с оптически активными веществами появилась необходимость сравнения расположения атомных групп вокруг центров асимметрии как у пар антиподов, так и у различных групп аналогично построенных стереоизомеров (сахаров, аминокислот и т. д.) для их классификации. Рещение первой задачи — определение пространственного расположения групп у каждого антипода, т. е. определение абсолютной конфигурации долгие годы казалось неразрешимым. Для каждой пары антиподов, например а и б (рис. 1), нужно было решить соответствует ли правовращающему веществу формула т. щ а или формула Ь. Однако произвести такой выбор формулы не удавалось, потому что, кроме знака вращения, а также способности при определенных условиях кристалли- зоваться в противоположных — зер- кальных — формах два антипода Рис. 1. Схемы строения обладают совершенно одинаковыми антиподов а к б физическими свойствами. Р чмкoгo дeнVa " "  [c.13]

    Экспериментально установленная абсолютная величина вращения способной к образованию дилактона кислоты = 26,7"" лучше всего согласуется с комбинациями 1 н 2. 3 д е с ь общее оптическое вращение имеет тот же знак, что и величина А, обусловленная одним из асимметрических центров, для которого связь знака вращения с конфигурацией известна (установлена для диоксиадипиновой кислоты). Следовательно, для антиподов а,а -диокси-а-метиладипино-вой кислоты можно написать проекционные формулы, в которых (из предыдущего рассуждения) асимметрическому центру при вторичном атоме углерода можно придать следующую конфигурацию  [c.276]

    Долгое время не существовало метода для определения абсолютной, или реальной, конфигурации асимметрических атомов оптически активной молекулы. Картины интерференции, полученные при прохождении рентгеновских лучей через изомеры ( + ) и (—) любого вещества, тождественны. Однако если произвести фазовое запоздание при дифракции некоторых атомов за счет их возбуждения рентгеновскими лучами подходящей длины волны, то интенснвности дифракций, наблюдаемых у двух исследуемых антиподов, уже не тождественны и, таким образом, становится возможным их различить. В данном случае работали со смешанным тартратом натрия и рубидия ( + ), применяя линию Ка циркония, которая возбуждает атом рубидия (Ж. М. Бижвоет, 1954 г.). При этом устаиовлено, что правовращающая винная кислота обладает в действительности конфигурацией, тождественной условной конфигурации, давно применяемой в стереохимии и изображенной приведенными ниже формулами. Эта конфигурация соответствует конфигурации (4-)-глицеринового альдегида таким образом, все относительные конфигурации, установленные на основании правила Э. Фишера, соответствуют случайно реальным конфигурациям молекул (об этих важных стереохимических соотношениях см. том II, Стереохимия II ). [c.34]


Смотреть страницы где упоминается термин Оптические антиподы абсолютная конфигурация: [c.266]    [c.458]    [c.26]    [c.128]    [c.413]    [c.198]    [c.173]    [c.34]    [c.61]    [c.83]    [c.29]    [c.146]    [c.146]    [c.13]    [c.262]   
Курс органической химии Издание 4 (1985) -- [ c.224 , c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Антиподы оптические,

Оптические антиподы Оптические



© 2025 chem21.info Реклама на сайте