Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводород способу

    Применение такой классификации технологических схем очистки газов, которая включает характеристику конечного продукта конверсии сероводорода, способов его извлечения, окисления и регенерации поглотителя и окислителя дает полное представление о любой технологии очистки газа, в том числе и о степени ее воздействия на окружающую среду [1]. [c.45]

    Причины вспенивания абсорбентов при очистке газа от сероводорода. Способы устранения вспенивания раствора. [c.357]


    Выполнение реакции- . На капельной пластинке 2—3 капли бензола или четыреххлористого углерода смешивают с 1—2 каплями концентрированного щелочного раствора плюмбита и 2 каплями 40%-ного раствора формальдегида. В присутствии сероуглерода на поверхности раздела между органическим растворителем и водным слоем появляется темное кольцо сульфида свинца. Перед выполнением этой реакции необходимо удалить сероводород. Способ удаления сероводорода описан на стр. 572. [c.643]

    Если исследуемый раствор содержит примеси Fe или если нужно определять железо в растворе, содержащем Fe +, то железо предварительно восстанавливают до Fe +. Для этого имеется несколько способов. Можно железо восстановить сероводородом, различными металлами и амальгамами, раствором- хлорида олова (И) и т. д. Рассмотрим два из методов восстановления. [c.382]

    МЭА-процесс до конца 50-х годов был практически единственным способом очистки природного газа от сероводорода и диоксида углерода. [c.171]

    Проведение глубокой очистки от сероорганических соединений, так же как и от сероводорода, рекомендуется иа возможно более ранней стадии обработки газа. Выбор способа очистки обусловлен составом газа и требованиями к его степени очистки. [c.198]

    Определение содержания сероводорода потенциометрическим способом (ГОСТ 11064-64) [c.182]

    Почти постоянное присутствие в нефтях органических сернистых соединений, сероводорода и в некоторых случаях свободной серы можно объяснить несколькими способами. Какая-то часть сернистых соединений, несомненно, образовалась из остатков исходного органического вещества. Некоторые нефти содержат комплексные сернистые соединения неизвестной структуры, которые легко разлагаются при температурах, соответствующих выкипанию бензиновых фракций, с выделением сероводорода. Этот факт, как и присутствие хлорофилловых порфиринов, указывает на относительно низкую температуру процесса образования нефти. [c.81]

    Осернение может быть произведено разными способами [77а] обработкой влажных гранул катализатора сероводородом [а. с. 108257 (СССР) БИ, 1957, N 9] обработкой при повышенных температурах прокаленного катализатора сероводородом в смеси с водородом обработкой катализатора сырьем, содержащим серу, в процессе изомеризации или, наконец, введением сернистого соединения в носитель - оксид алюминия. [c.55]


    Промышленные испытания предлагаемого метода показали, что при отравлении катализатора серой, восстановление его первоначальной активности наступает при прекращении образования сероводорода, т.е. при полной "отмывке" катализатора от серы. При глубоких отравлениях это происходит достаточно долго - от 10 до 20 суток. В это время применение способа восстановления происходит следующим образом  [c.49]

    Указать лабораторный способ получения сероводорода. Как можно получить селеноводород и теллуроводород  [c.225]

    Средние соли сероводорода называются сульфидами. Их можно получать различными способами, в том числе непосредственным соединением металлов с серой. Смешав, например, железные опилки с порошком серы и нагрев смесь в одном месте, можно легко вызвать реакцию железа с серой, которая дальше идет сама и сопровождается выделением большого количества теплоты  [c.383]

    До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    Завершающим этапом в цепи описанных выше процессов подготовки природных и попутных газов к переработке является утилизация сероводорода. До недавнего времени сероводород считался вредной и опасной примесью нефтяных и природных газов. Сейчас на базе нефтяного сероводорода налажено производство элементарной серы. Самым широко распространенным способом получения элементарной серы из сероводорода является процесс Клауса, основанный на неполном сгорании сероводорода. При этом протекают следующие реакции  [c.162]

    Внедрение в нефтеперерабатывающей промышленности процесса термического крекинга потребовало применения вторичной перегонки крекинг-бензинов, подвергшихся сернокислотной очистке, с целью удаления из них полимеров. Для этого Строились атмосферные и атмосферно-вакуумные установки. Применение вакуума для снижения температуры перегонки до 130—140° С диктовалось стремлением предупредить распад сернистых соединений, приводящий к образованию коррозионно-агрессивного сероводорода. Однако эксплуатация подобных установок показала, что разложение и коррозия аппаратуры не устраняются. Поэтому вместо сернокислотной очистки стали применять более совершенные способы сероочистки, лучшим из которых ныне является гидроочистка. [c.322]

    Каст и Латай (372) однако оспаривают продуктивность такого приема исследования. Гидрированные тиофены (так называемые тиофаны ) Мэбери получал аналогичным способом. Смесь сернистых соединений, полученных разгонкой с водяным паром фильтрата от сернокислого свинца, после фракционировки и переведения в двойные соли с сулемой, разлагалась сероводородом, а выделенные масла, по окислении хамелеоном, переводились в сульфоны, — сравнительно прочные тела. Кроме сулемы, сернистые соединения вступают б соединения также и с другими ртутными солями, с солями платины и т. п. Очевидно однако, что и в случае сернистых соединений нельзя указать не только общих приемов анализа, но даже методов полного извлечения их из нефти. [c.57]

    В настоящее время окисление концентрированного сероводорода до серы в промышленных масштабах осуществляется методом Клауса, где в качестве окислителя выступает диоксид серы. Однако более перспективным представляется способ, основанный на избирательном каталитическом окислении сероводорода без его предварительного извлечения из углеводородных газов. Такой метод исключает необходимость предварительной очистки газов от сероводорода, его концентрирования и окисления до диоксида серы. Не ограничивает применение этого способа и термодинамика процесса, так как окисление сероводорода до серы является экзотермической реакцией. В интервале 100...300°С константа равновесия колеблется в пределах 10 . ..10 что свидетельствует о практически полном смещении равновесия в сторону образования целевого продукта. [c.97]

    Полимерная серу обычно получают распылением расплава комовой серы в присутствии стабилизатора в воде или сублимацией серы в токе инертного газа. Эти способы требуют значительных энергетических затрат на нагрев серы до парообразного состояния. Предлагаемый процесс основан на классической реакции окисления сероводорода при недостатке кислорода  [c.132]


    Более глубокий интерес представляют способы доочистки, осуществляемые через превращения сернистых соединений в сероводород. Процессы этой группы основаны на каталитическом восстановлении всех сернистых соединений в сероводород и отличаются, главным образом, способами его извлечения и последующей обработки. [c.173]

    Каковы же причины столь глубокой перестройки железоделательной индустрии Коснемся двух главных. Первая — это необходимость соблюдения чистоты окружающей среды. Огромные выбросы сернистого газа, окиси углерода и пыли приходятся на агломерациолные фабрики, доменные и мартеновские печи, конвертеры при грануляции шлаков обильно выделяется сероводород. Способ же прямого восстановления руд (он воплощен на уже действующих и строящихся заводах) сопряжен со значительно меньшими загрязнениями окружающей нас среды — атмосферного воздуха и воды. [c.136]

    При этих условиях сера органических сернистых соединений превращается в сероводород, который одновременно удаляется с катализатора. Новейший способ, очень хорошо зарекомендовавший себя на практике, одновременно позволяет очистить газ не только от сернистых соединений, но и от углекислоты, синильной кислоты, аммиака и смолистых загрязнений (ректизол-способ) оп заключается в промывке газа глубоко охлажденным метиловым спиртом, растворяющим все перечисленные загрязнения [21]. Способ работы примерно следующий (рпс. 10). Сырой газ при рабочем давлении синтеза, равном примерно 20 ат, подается в нижнюю часть промывной колонны 1, имеющую температуру —20°, где промываетс [ метиловым спиртом, поступающим в среднюю часть промывной башии с температурой порядка —75°. Стекая вппз по колонне, метиловый спирт нагревается от [c.28]

    Промышленные способы получения сероуглерода из природного газа (метана) и сероводорода разработаны в США фирмой Пур Ойл Компани. Использование реакции сероводорода с метаном особенно целесообразно в тех случаях, когда природный газ уже содержит достаточное количество сероводорода, как, например, газ месторождения Лакк во Франции, где содержание сероводорода достигает 15%. [c.147]

    Определить расход газа, содержащего сероводород. На установке ио производству серной кислоты способом мокрого катализа Новополоцкого НПЗ исг оль-зуют отходяищ 1 пз установки гидроочистки газ с массовой долой IFS 0,97, Производительность устаиов1 н — [c.140]

    Очистка отгона [бензина] от сероводорода. Отгон (бензин), получаемый в процессе гпдроочистки, в зависимости от характеристики исходного сырья может содержать до 1,5% Н. 8. Для его удаления применяют два способа 1) на установках старого типа предусмотрена схема защелачивания бензина с последующей водной промывкой и отстоем (см. рис. 9, И, 12) 2) за последние годы принята схема отдува бензина углеводородным газом (см. рис. 10,13). [c.74]

    ЗОг), при синтезе аммиака (конвертор Фаузера — Монтекатини— рис. 1Х-55, в котором вода под давлением 300 ат движется в замкнутом цикле и отдает теплоту воде, кипящей в котле), при каталитическом окислении аммиака до окиси азота (рис. 1Х-56), при сжигании сероводорода по методу Клауса и т. д. Такой способ приводит не только к рациональному использованию тепловой энергии, но в некоторых случаях и к наиболее выгодному для повышения выхода реакции распределению температур (синтез МНз, сгорание [c.402]

    В настоящее время наиболее широкое распространение получили два способа сероочистки поглощение сероводорода из газа раствором моноатаноламина и поглощение сероводорода мышьяково-содовым раствором с последующей регенерацией абсорбента. Этп схемы и химизм процесса подробно описаны в литературе [10, 111. Они примерно равнозначны по своим технико-экономическим показателям. Достоинством мышьяково-содовой очистки является возможность производства на базе поглощенного сероводорода товарных продуктов элементарной серы и гипосульфита. Однако в этом случае необходимо строительство отдельной установки очистки сиптез-газа от углекислоты. [c.18]

    Для промышленности был рекомендован способ обработки влажных гранул катализатора сероводородом после нанесения платины на оксид алюминия. Этот метод позволяет получить селективный и активный изо-меризующий катализатор. [c.57]

    В секции изомеризации принята двухреакторная схема со ступенчатым снижением температуры от первого реактора ко второму. Повышенная температура в первом по ходу сырья реакторе 2 обеспечивает более полное разложение чегы-реххлористого углерода и протекание изомеризации с образованием изопентана и монозамещенных гексанов, во втором реакторе 3 происходит изомеризация до вы-сокоразветвленных гексанов, обладающих высокими октановыми характеристиками. Принятый способ низкотемпературной изомеризации определяет включение в схему установки системы глубокой осушки и очистки от сероводорода водородсодержащего газа, поступающего в систему изомеризации, а также узлов хлорирования катализатора и улавливания продуктов хлорирования. [c.143]

    Абсорбционный мышьяково-содовый способ основан на окислении сероводорода кислородом с образованием элементарной серы. При поглощении сероводорода щелочным мышьяково-содовым раствором образуются тиосоедннения мышьяка, в которых кислород за(ме,щен серой. При последующем окислении раствора воздухом (регене рация) протекает обратная реакция с выделением элементарной серы. [c.46]

    Нефтепродукты быстро реагируют с серой, так же реагируют как практически все углеводороды. Действительно, элементарная сера, растворенная в сырой нефти, реагирует при комнатной телшературе так же слабо, как при температуре около 100° С. Удобным способом приготовления сероводорода является нагрев серы с твердыми парафинами примерно до 150° С. При 230° С образуются дисульфид-углероды, а после продолжительного нагрева при этой температуре получают смолистые вещества, показывающие при анализе ( sS) [714]. В производстве дисульфида углерода метан и сера нагреваются до 600° С в качестве катализатора используется гель кремния [715—717]. Нагревая бутан и серу до 500—700° С, получают тиофен [718, 719] в процессе реакции образуются к тому же бутены с бутадиенами пентаны, соответственно, дают метилтеофен. Подобным же образом октаны в реакциях с серой при 270—280° С дают диалкилтиофены [720-722]. [c.148]

    Примечание. Показатели качества нефтепродуктов определяются методами испытаний по следующим ГОСТам цетановое число — 3122—67, фракционный состав — 2177- 6, кинематическая вязкость — 33—66, кислотность и кислотное чис-сло — 5985—59, зольность — 1461—59, содержание серы — 1771—48, содержание меркаптановой серы — 6975—57, содержание меркаптановой серы потенциометрическим титрованием—9558—60, испытание на медной пластинке — 6321—69, водорастворимые кислоты и щелочи — 6307—60, механические примеси — 6370—59. содержание воды — 2477—65, температура вспышки в закрытом тигле — 6356—52, температура вспышки в открыто.- тигле — 4333—48. условная вязкость — 6258—52. коксуемость — 5987—51, коксуемость 10%-ного остатка дизельного топлива — 5061—49, температура помутнения и начало кристаллизации — 5066—56, температура застывания — 1533—42, содержание сероводорода — 11064—64, содержание смол — 1567—56, определение цвета — щ 2667—52, йодное число — 2070—55 содержание серы хроматным способом — 1431—64, [c.9]

    Определение серы производится по способам, указанным для нефти или мазута. Принято думать, что в случае асфальтов можно с меньшей осторожностью выбирать способы анализа, построенные на принципе Эшке (окисление в открытых тигельках.) Напр., пользуются методом Лидова, Эшке н др. Но так как при нагревании асфальта до 300—350° уже ясно слышен запах сероводорода, потеря части серы представляется очень вероятной. В этом смысле надежнее способ Ричардсона (296), основанный на окислении асфальта и его серы крепкой азотной кислотой с примесью бертоле- [c.359]

    Предварительное сульфидирование катализаторов гидроочистки является важным средством повышения активности катализаторов гидрообессеривания и гидродеазотирования [78,79,134-137]. Существуют различные способы сульфидирования. В частности, рекомендуется проводить сульфидирование катализаторов гидрогенизационных процессов сероводородом. При этом достигается наиболее высокая степень сульфидирования [142], но применение этого способа затруднено из-за высокой токсичности и коррозионной активности сероводорода и сложности его дозирования. Наиболее широко в промышленных условиях применяется сульфидирование катализатора серусодержащей нефтяной фракцией или индивидуальными сераорганическими соединениями [38,79]. Например, дистиллятная нефтяная фракция с высоким содержанием серы пропускается через катализатор в течение 1-2 суток в режиме гидроочистки (давление 3-15 МПа, температура 300-450 С). Однако при этом полного сульфидирования катализатора не достигается вследствие экранирования части активных центров отложениями кокса. Наиболее эффективным является метод сульфидирования специальными серусодержащими веществами [78], такими могут служить сероуглерод, диметилсульфид, н-бутил меркаптан, диметилдисульфид, ди-третнонилполисульфид. Однако применение сероуглерода и меркаптанов сдерживается нормами по охране окружающей среды. Поэтому наиболее успешно применяются диметилдисульфид и диметилсульфид, обладающие низкими температурами разложения (250 С) и дисульфидное масло, получаемое на установке демеркаптанизации ДМД-2. [c.15]

    Как было указано выше, каталитическая гидроочистка - наиболее эффективный способ удаления из нефтепродуктов сернистых соединений всех типов. Однако процесс гидроочистки требует высоких капитальных и эксплуатационных затрат, и мощности по гидроочистке на НПЗ не всегда обеспечивают очистку всех вырабатываемых на заводах топлив. В ряде случаев выгодна очистка топлив простыми по технологическому оформлению и дешевыми процессами селективной демеркаптанизации. Нельзя оставить без внимания и тот факт, что зарубежными стандартами предусматривается более высокое (до 0,3-0,4 %), чем у нас (до 0,2 %) содержание в реактивных топливах общей серы и допускается возможность введения в топливо антиокислителей и деактнваторов металлов. Установлено, что дизельные топлива, содержащие 0,2-0,3 % общей серы, при отсутствии в них меркаптанов, сероводорода и свободной серы в десятки раз стабильнее полностью обессеренных топлив [1]. [c.19]

    Природные газы сернистых месторождег.ий в наибольших количествах содержат сероводород. Когда возникает вопрос о сероочистке газа, то имеется в виду извлечение из него именно сероводорода. Однако такие серосодержащие соединения, как карбонилсульфид ( OS), карбор днс лк ид ( S,) и меркаптаны, даже если они содержатся в газе в виде следов, имеют iie менее важное, чем сероводород, значение для выбора процесса сероочистки. Решающую роль в выборе схемы и способа сероочистки имеет правильное определение состава кислых компонентов газа. Очень часто неумение в ходе анализа обнаружить эти соединения приводило к ошибочным и, как оказывалось, дорогим выводам о том, что газ не содержит этих компонентов. [c.267]


Библиография для Сероводород способу: [c.150]    [c.150]   
Смотреть страницы где упоминается термин Сероводород способу: [c.78]    [c.5]    [c.66]    [c.136]    [c.236]    [c.524]    [c.57]    [c.75]    [c.77]    [c.186]    [c.300]    [c.134]    [c.172]   
Основы химии и технологии химических волокон Том 1 (копия) (1964) -- [ c.471 ]




ПОИСК







© 2025 chem21.info Реклама на сайте