Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция противоточная,

    Уравнения внутреннего материального баланса (уравнения рабочих линий) для процесса абсорбции в противоточных аппаратах с непрерывным контактом фаз могут быть представлены в следующем виде  [c.44]

    Какой процесс (прямоточный, противоточный или перекрестный) наиболее эффективен при абсорбции серного ангидрида 98%-ной серной кислотой  [c.101]


    Аксельрод Ю. В., Дильман В. В..Вайнберг А. М., Труды научно-исследовательского и проектного института азотной промышленности и продуктов органического синтеза, вып. 6. 1971, стр. 283. Метод расчета противоточной абсорбции, осложненной химической реакцией. [c.267]

    Массообменные процессы весьма многообразны. Они отличаются агрегатным состоянием взаимодействующих фаз, характером их движения в аппарате, наличием параллельно протекающих процессов теплообмена. Этим обусловлено большое разнообразие применяемых на практике конструкций массообменных аппаратов. В той или иной степени различаются и методы их расчета. Рассмотрим наиболее распространенные в технике массообменные процессы непрерывные процессы абсорбции и жидкостной экстракции в противоточных аппаратах непрерывную ректификацию бинарных систем периодические процессы с участием неподвижного слоя твердой фазы. [c.42]

    Охлажденный газ с объемным содержанием H2S до 3% и СО2 до 20% противоточно промывают раствором алканоламина в абсорбере, специально рассчитанном для полной абсорбции всего H2S и лишь незначительной части СО2. Очищенный газ из 194 [c.194]

    В системе I (газ + газ) проводят высокотемпературные химические процессы, для которых применяют змеевиковые 2 и контактные аппараты 1 и конвертеры различных систем, а также процессы газоочистки, для которых используют газоочистительные аппараты 3. В системе И (газ-f жидкость) производят ректификацию, абсорбцию, мокрую газоочистку, а также многие химические реакции. Прн этом применяют колонные 4 и башенные аппараты с устройствами, обеспечивающими хороший контакт между жидкостью и газом. Для газов, хорошо растворимых в жидкости, когда достаточна небольшая поверхность контакта, процесс проводят в простейших аппаратах барботажного типа 5 или в поверхностных абсорберах 6. В системе III (жидкость + жидкость) осуществляют физико-химические и различные химические процессы. Для этого применяют емкостные аппараты с мешалками 7 или без них и аппараты змеевикового типа 8. Для обработки взаимно нерастворимых жидкостей с различным удельным весом иногда используют аппараты колонного типа с противоточным движением жидкостей. Сепарацию проводят в сепараторах центробежного типа 9. [c.5]

    Ю. В. Аксельрод и др.566 дали математическое описание кинетики противоточной абсорбции, осложненной необратимой реакцией, учитывающее распределение концентраций по высоте абсорбера, в частности в результате продольного перемешивания. Доп. пер. [c.220]


    При абсорбции хлора известковым молоком концентрацией 100 г/л СаО в многополочном пенном абсорбере с противоточными решетками степень извлечения хлора должна составлять не менее 95%. Какова должна быть средняя движущая сила абсорбции для обеспечения требуемой полноты поглощения хлора  [c.222]

    Аксельрод Ю. В.,Дильман В. В., Труды научно-исследовательского и проектного института азотной промышленности и продуктов органического синтеза, вып. 10, 1971, стр. 196. О расчете противоточной абсорбции двух газов, осложненной необратимыми химическими реакциями в жидкой фазе. [c.267]

    Абсорбцию и экстракцию можно осуществлять в типовых, широко применяемых в технике аппаратах, например в противоточных колоннах. [c.168]

    Сопоставим рассмотренные схемы абсорбции, имея в виду следующие показатели процесса удельный расход абсорбента, движущую силу процесса и коэффициенты массопередачи. На рис. 12-5 показаны прямоточный и противоточный процессы при заданных параметрах их У и [c.287]

    На рис. Х У1П-2 схематично изображен контактный аппарат е так называемым турбулентным слоем, являющимся разновидностью противоточного трехфазного нсевдоожижения и получившим промышленное применение. Псевдоожиженный восходящим потоком газа слой частиц низкой плотности (обычно, шары — полые из полиэтилена или сплошные из вспененного полистирола) орошается нисходящим потоком жидкости. Установки подобного типа используются в промышленности для жидкостной абсорбции из газовых смесей, мокрой очистки запыленных газов, а также их охлаждения и осушки. [c.658]

    Отличительные черты прямоточного и противоточного аппаратов легко проследить на примере физической экстракции или абсорбции, когда /Ср=0. В этом случае математическая модель процесса имеет вид [c.146]

    Необходимо отметить, что аналогичные зависимости для других противоточных процессов массообмена (абсорбции) выведены Крейсером [421, а также Саудерсом и Брауном 74]. [c.141]

    Для определения диаметра колонны надо знать поток газа (пара) по колонне и скорость газа (пара) в свободном сечении колонны При проведении процесса абсорбции поток газа по колонне определяется из условий материального баланса. При проведении процесса ректификации из материального баланса находят величину Ор. Оптимальное флегмовое число можно рассчитать по методике, изложенной ранее, при условии минимального объема противоточного аппарата. [c.340]

    Двухфазное движение газа и жидкости через насадку является противоточным движением (например, в процессе абсорбции) газ идет вверх с массовой скоростью 0 (в расчете на полное сечение аппарата), а жидкость стекает вниз с массовой скоростью Gя (рис. П-39), [c.132]

    Для реального процесса значения 0 10 должны быть больше этого минимума, так как процесс абсорбции может проводиться разными способами, например по противоточной схеме в тарельчатой колонне, похожей по конструкции на ректификационную колонну. Этот способ используется, когда основные сопротивления движению абсорбируемого компонента находятся на стороне жидкости (слабая растворимость абсорбируемого компонента). В тарельчатых колоннах, которые работают по принципу барботажа, жидкость весьма интенсивно контактирует с проходящими через нее пузырьками газа. [c.534]

    Таким образом, динамика процесса абсорбции в насадочном аппарате в режиме идеального вытеснения без труда может быть описана с помощью формул, аналогичных уже полученным для противоточного теплообменника. Значительно сложнее исследовать динамику насадочного абсорбера в том случае, когда нельзя пренебречь продольным перемещиванием. При использовании одно-параметрической диффузионной модели абсорбер описывается уравнениями (1.2.30), (1.2.31) с граничными условиями (1.2.37) (считаем, что расходы по жидкости и газу постоянны). Как и раньше, будем полагать, что функция 0 (0 ) имеет линейный вид 0д = Г01. При этом функциональный оператор А, задаваемый с помощью уравнений (1.2.30), (1.2.31), граничных условий (1.2.37) и нулевых начальных условий будет линейным. Но поскольку уравнения математической модели являются уравнениями в частных производных второго порядка, исследовать этот линейный оператор очень трудно. С помощью применения преобразования Лапласа по t к уравнениям и граничным условиям можно получить выражение для передаточных функций. Однако они будут иметь столь сложный вид по переменной р, что окажутся практически бесполезными для описания динамических свойств объекта. Рассмотрим математическую модель насадочного абсорбера с учетом продольного перемешивания при некоторых упрощающих предположениях. Предположим, что целевой компонент хорошо растворяется в жидкости, и поэтому интенсивность процесса массообмена между жидкостью и газом пропорциональная концентрации целевого компонента в газе. В этих условиях можно считать 0 (0 ) 0. Физически такая ситуация реализуется, например, при хемосорбции, когда равновесная концентрация поглощаемого компонента в газовой фазе равна нулю. При 0а(0 ) = О уравнение (1.2.30) становится независим мым от уравнения (1.2.31), поскольку в (1.2.30) входит только функция 00 (л , t) При этом для получения решения о(а , t), системы достаточно решить одно уравнение (1.2.30) функцию QL x,t), после того как найдена функция можно найти [c.206]


    Однако на практике часто ограничиваются расчетом фиктивной скорости, исходя из максимального ее значения. Упрощенный подход к вычислению фиктивной скорости обусловлен тем, что во многих случаях ее предельное значение определяется наступлением захлебывания в противоточных аппаратах (см. стр. 116), или чрезмерным возрастанием брызгоуноса. В процессах массообмена, где повышенное гидравлическое сопротивление не имеет весьма существенного значения, например при ректификации или при абсорбции, проводимых под избыточным давлением, оптимальная скорость обычно близка к предельной и может быть, в первом приближении, принята равной скорости захлебывания, уменьшенной, например, на 10—20%.- [c.423]

    При противоточной схеме абсорбции (рис. Х1-31) газ проходит через абсорбер снизу вверх, а жидкость стекает сверху вниз. Так как при противотоке уходящий газ соприкасается со свежим абсорбентом, над которым парциальное давление поглощаемого компонента равно нулю (или очень мало), то можно достичь более полного извлечения компонента из газовой смеси, чем при прямоточной схеме [c.467]

    При пуске первой установки синтеза хлористого аллила выявилась неработоспособность узла изотермической абсорбции. В гидравлических расчетах специалисты фирмы, по всей вероятности, перепутали противоточное движение продуктов между аппаратами с прямоточным внутри них. В результате пропускная способность абсорбции по хлористому водороду и пропилену, а также соляной кислоте, движущимся навстречу друг другу между аппаратами оказалась 30-36% от проекта. Смесители хлорирования пропилена не могли эксплуатироваться продолжительное время при нагрузках ниже 60% от проекта. На малых скоростях смещения хлора и пропилена они забивались. [c.143]

    Для успеха абсорбции необходимо многократно и противоточно приводить в соприкосновение газовую и жидкую среды. Стремление к установлению между ними равновесия происходит каждый раз на новой основе,- менее насыщенная жидкость встречает газ, обедненный тем компонентом, который подлежит извлечению. [c.255]

    Пусть, например, в определенной точке противоточного абсорбера (снизу поступает нагретый газ, сверху—холодная жидкость) движущая сила (уа—Уа) мала и абсорбция почти прекращается. Если в этой точке температура" газа выше температуры жидкости, то последняя будет нагреваться, вследствие чего увеличивается равновесная концентрация у. Поэтому на некотором расстоянии ниже рассматриваемой точки значение уХ может не только сравняться с значением ул, но и превысить его, т. е. движущая сила изменит знак. Аналогично можно объяснить экстремумы и других параметров. [c.264]

    Особенность адиабатической абсорбции летучим поглотителем состоит в том, что в каждом сечении противоточного абсорбера устанавливается температура жидкости 8, мало зависящая от температуры поступающей жидкости и близкая к некоторому значению i> (температура динамического равновесия). Температура O соответствует такой температуре жидкости в элементе dF, при которой жидкость, поступающая в элемент с той же температурой, не будет ни нагреваться, ни охлаждаться. Другими словами, все выделяемое в элементе тепло абсорбции будет расходоваться на нагрев газа и испарение поглотителя. [c.281]

    Пример 12. Определить максимальную концентрацию соляной кислоты, которая может быть получена при адиабатической абсорбции хлористого водорода водой в противоточном аппарате, если содержание НС1 в поступающем газе 10 объемн. % (i/ j=0.1), содержание водяных паров 9,2 объемн. % (i/gj— = 0,092), температура газа /i=115° , общее давление 1 бар. Отношение [c.283]

    В пенном аппарате абсорбируют аммиак из газа промывкой его водой. Рассчитать движущую силу абсорбции на противоточных и перекрестноточных решетках, если процесс абсорбции проводят при давлении 10 Па и 20 °С концентрация аммиака в газе снижается от Снач = 6% (об.) до Скон = 0,9% (об.), а содержание аммиака в воде увеличивается от Хиач = 0,06 кмоль/м до Хкон = = 0,3 кмоль/м . [c.221]

    На промышленных битумных установках газообразные продукты окисления подвергают частичной конденсации и очистке. Обычно их промывают водой либо масляной фракцией для удаления ядовитых и резко пахнущих веществ, а также для улавливания углеводородного дистиллята (отдува). Парообразные продукты окисления представляют собой тонкие аэрозоли. Они легко поглощаются при противоточной абсорбции, адсорбции или электростатическом осаждении. Наиболее удачный способ удаления этих аэрозолей — сжигание в присутствии катализатора (меди), суспензированного на гранулах окиси алюминия [407]. Преимуществом такого способа является беспламенное низкотемпературное (при 315— 343°С) окисление горючих материалов и полное сжигание даже следов этих веществ и сероводорода. [c.180]

    Сжатый газ, освобожденный от большей части высших углеводородов, пропускают через небольшой угольный адсорбер для удаления паров и увлеченного жидкого поглотительного масла. Затем сжатый газ пропускается через колонну противоточной абсорбции ацетилена избирательным растворителем, например диметилформамидом. Здесь ацетилен вместе с небольшими количествами других компонентов переходит из крекинг-газа в раствор. Выходящий из колонны насыщенный ацетиленом раствор пропускают через сепаратор (выветриватель), а затем через колонну отпарки растворителя, в которой проводится его отдувка циркулирующим ацетиленом под давлением, немного превышающим атмосферное. [c.252]

    Противоточный контакт фаз - известное решение, обеспечивающее максимальную движущую силу процесса переноса, широко распространенным примером которого является противоточная организация движения теплоносителей в теплообменнике. Рассмотрим другой пример - абсорбцию оксидов азота. На рис. 5.31, о показана зависимость равновесных парциальных давлений оксидов азота над раствором НМОз. Для максимального поглощения оксидов, которое достигается при их минимальном давлении, жидкая фаза должна быть слабокислой. Это осуществляется в абсорбере с противоточным движением фаз (рис. 5.31, б). Вверху абсорбера, где подается вода, концентрация кислоты минимальна, и выходящие газы содержат небольшое количество [c.300]

    Расчет противоточных абсорберов с обратимой химиче ской реакцией разработан только для предельных гидродинамических режимов. Так, при полном перемешивании жидкости расчет следует вести по уравнению (II, 80) на конечные концентрации всех компонентов в жидкости. Если предположить идеальное вытеснение потоков газа и жидкости, то расчет ведут последовательно, разбивая весь диапазон концентрации (от начальной до конечной) на ряд интервалов. При расчете скорости абсорбции используют средние для данного интервала значения концентраций. [c.72]

    В обрабатываемую сточную воду озон вводят различными способами барботированием содержащего озон воздуха через слой воды (распределение воздуха происходит через фильтросы) противоточной абсорбцией озона водой в абсорберах с различными насадками (кольца Рашига, хордовая насадка и др.) смешиванием воды с озоно- воздушной смесью в эжекторах или специальных роторных механических смесителях. [c.63]

Рис. Х1-31. Схема противоточной абсорбции. Рис. Х1-32. Схема прямоточной а 1сорбции. Рис. Х1-31. <a href="/info/140031">Схема противоточной</a> абсорбции. Рис. Х1-32. <a href="/info/107078">Схема прямоточной</a> а 1сорбции.
    Принципиальная схема произвольной структуры —I—разделительного процесса с -1 т фазовыми превращениями— простой перегонкой, ректификацией, отпариванием, абсорбцией, экстракцией и т. п. — может рассматриваться как противоточный каскад из N секций (рис. 1-48). В текущую /-ю секцию могут подаваться паровой // и жидкостной [, потоки сырья, а также паровые и жидкостные потоки, выходящие из произвольной к-и сехции (кФ1) в количестве, пропорциональном коэффициентам распределения потоков и /й. Коэффициенты а к обозначают долю потока, поступающего в секцию / из секции к. В /-ю секцию может подводиться или отводиться из секции тепло в количестве Qj. [c.90]

    Исследованию и расчету колонных химических реакторов и процессам абсорбции и десорбции в колонных аппаратах посвящена об-щирная литература. Больщинсгво работ относится к экспериментальному изучению конкретных систем и получению эмпирических формул дпя расчета аппаратов. В ряде работ применяются пленочная и пенетрационная модели массопередачи с химическими реакциями, изложенные в гл. 6. Поскольку, однако, эти модели разработаны для случая постоянства концентрации хемосорбента и абсорбтива (экстрактива) в сплошной и дисперсной фазах, их применение дпя расчета прямо- и противоточных аппаратов затруднено. Обычно при расчете колонных аппаратов полагают, что коэффициент ускорения массообмена вследствие протекання химических реакций постоянен по высоте колонны. Это допущение может привести в ряде случаев к существенным ошибкам. [c.286]

    IX-1-6. Продольное перемешивание. Как отмечалось в разделе VI П-1, при расчетах противоточной абсорбции в насадочных колоннах обычно принимают, что и газ, и жидкость движутся поршневым потоком , в котором элементы жидкости, входящие в колонну в одно и то же время, движутся через аппарат, не опережая и не отставая друг от друга, и выходят из него также одновременно. Известно, что такое допущение об идеальном вытеснении не совсем точно отражает реальную картину и что на самом деле происходит некоторое перемешивание, или обмен местами между элементами потока, входящими в колонну не одновременно. Измерения степени перемешивания жидкости и газа проводились, например, Де Мариа и Уайтом Сэтером и Левеншпилем и Де Ваалем и Мэмереном [c.219]

    Пример ХПМ. Концентрацию в воздухе нежелательного компонента А необходимо уменьшить с 0,1 до 0,02% абсорбцией его водой или кислым раствором вещества В различной концентрации. Найти высоту колонны для противоточной абсорбции компонента А а) чистой водой б) концентрированным раствором кислоты концентрацией Сд = 0,81 моль/л или приблизительно 0,8 н. в) разбавленным раствором кислоты концентрацией Сд = 0,052 моль1л г) раствором кислоты концентрацией Сд = 0,13 моль л. [c.389]

    Мицубиси Хэви Индастриз разработала противоточный скруббер [562], представляющий собой набор горизонтальных У-образ-i ыx желобов, плотно соединенных в вертикальные ряды, так что газ вынужден проходить через слой жидкости. Эффективность абсорбции 50г (содержание в газе 0,11—0,24%) раствором сульфита натрия составляла 90—95% при перепаде давления около 0,7— [c.133]

    При изотермической абсорбции минимальный расход абсорбента мин определяется из уравнения (X. 1) или. (Х.2) путем подста- новки значения конечной концентрации компонента А в жидкости, равновесной его начальной концентрации в газе. Для противоточного процесса из уравнений (Х.1) и (Х.2) получим [c.327]

    Выражения (X. 13) и (X. 14) относятся к диффузии через слой инертного носителя, что характерно для процесса абсорбции. При малых концентрациях эти выражения для противоточной эквимо-лярной диффузии могут быть приведены к виду [c.329]

    Ниибольший интерес при расчетах аппаратуры представляет массопередача в противоточных диффузионно-контактных аппаратах, в которых проводятся такие процессы, как ректификация, абсорбция, адсорбция, экстракция и сушка. [c.293]

    Поэтому одноступенчатое оформление процесса не обеспечивает полного извлечения изобутилена при высокой скорости абсорбции с получением насыщенного кислотного экстракта. Двухступенчатая противоточная схема позволяет на первой ступени при сравнительно высокой температуре производить абсорбцию с большой скоростью и получать насыщенный кислотный экстракт, а на второй при более низкой температуре завершать извлечение изобутиленов. Обычно на первую ступень подают свежую фракцию и экстракт с насыщением 0,5 моля г-С4Нв/моль Н2304 при температуре 38°. Полученный кислотный экстракт с насыщением 1,5 моля г-С4Н а/моль НаЗО отводится на гидролиз для получения триметилкарбинола, а углеводородная фракция направляется на вторую ступень. Сюда подается свежая кислота, которая при температуре 13—24° насыщается до 0,5 моля -СШв/моль Н2304. Содержание пзобутилена во фракции снижается до 1 %. Эта фракция может быть использована для получения в го/)-бутилового спирта. [c.268]

    Процессы абсорбции и ректификации осуществляются обычно в противоточных аппаратах, где участвующие в массообмепе фазы протекают одна навстречу другой. Обозначим весовую скорость паровой фазы через V, а жидкой через Ь. [c.40]

    Разработан [37] новый способ абсорбции окиси углерода (и других примесей) жидким азотом. Способ может быть эффективно использован в тех случаях, когда исходная газовая смесь содержит избыток азота и часть его необходимо сконденсировать. В этом случае процесс конденсации азота можно совместить с абсорбцией конденсирующимся азотом. Процесс проводят в противоточном абсорбере, снабженном вверху дефлегматором, в котором конденсируется избыточный азот, подаваемый на орошение абсорбера. Если количество избыточного азота недостаточно для полной очистки, осуществляется подпарка кубовой жидкости, т. е. процесс приближается по технологическому оформлению к ректификации. [c.364]


Библиография для Абсорбция противоточная,: [c.267]   
Смотреть страницы где упоминается термин Абсорбция противоточная,: [c.35]    [c.362]    [c.138]    [c.59]   
Массопередача (1982) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте