Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия разрушение, причины

    РАЗРУШЕНИЯ ПОКРЫТИЙ, ИХ ПРИЧИНЫ и СЛЕДСТВИЯ 569 [c.569]

    РАЗРУШЕНИЯ ПОКРЫТИЙ, ИХ ПРИЧИНЫ И СЛЕДСТВИЯ 571 [c.571]

    РАЗРУШЕНИЯ ПОКРЫТИЙ, их ПРИЧИНЫ и СЛЕДСТВИЯ 581 [c.581]

    РАЗРУШЕНИЯ ПОКРЫТИЙ, их ПРИЧИНЫ И СЛЕДСТВИЯ [c.583]

    Возникновение локальных пар окалина—металл имеет большое практическое значение для коррозионной стойкости стальных конструкций не только в морской воде. Так, понтоны сплоточных машин, изготовленные пз листов низкоуглеродистой стали без предварительного снятия окалины, за работу в течение двух навигаций на Северной Двине подверглись значительной местной коррозии с глубиной отдельных язв до 1,5—2 мм. Причиной этого быстрого коррозионного разрушения металла понтонов, как установил М. Д. Мещеряков, явилось наличие на стали окалины. В результате повреждения окалины в отдельных местах возникли гальванические пары, в которых роль катода играла окалина, а роль анодов — отдельные свободные от окалины участки металла. Большая катодная поверхность (покрытая окалиной) и сравнительно малая поверхность анодов (участков, свободных от окалины) и приводит к усиленному анодному растворению металла в местах с удаленной или поврежденной окалиной. [c.400]


    При осуществлении электрохимической защиты трубопровода на всем его протяжении не удается создать одинаковые значения защитного потенциала. Так как в наиболее удаленных точках должен быть минимальный защитный потенциал, то на ближних участках трубопровода неизбежно создаются большие значения защитного потенциала, что может ускорить разрушение и отслаивание покрытия от металла. Причины этого явления изучены еще недостаточно. Теоретическими и экспериментальными исследованиями установлено, что в грунтах высокой влажности катодная реакция с водородной деполяризацией начинает протекать при потенциале, равном —1,1В во влажных грунтах—при потенциале [c.115]

    Одной из причин преждевременного разрушения дорожных покрытий является плохое сцепление вяжущего с минеральным наполнителем из кислых пород. [c.123]

    Излишне напоминать о важности детального изучения деформирования и прочности промышленных полимерных материалов. Это очевидно всем, кто захочет применять полимеры в несущих конструкциях, для антикоррозийных покрытий или в узлах деформирования либо займется переработкой отходов из них. Прочность и разрушение образца являются положительной и отрицательной сторонами одного и того же явления разрушения материала под действием напряжения. Последний этап такого разрушения проявляется в риде макроскопического ослабления используемого объекта, будь то труба для воды, нефтяная цистерна из армированного стекловолокна или пластмассовая корзина для продуктов. Часто менее заметны предшествующие промежуточные этапы нелинейное деформирование, воздействие окружающей среды, начало образования трещин и их рост, хотя именно они служат причиной и создают очаги разрушения в нагруженном образце. [c.9]

    Причины, вызывающие коррозионное разрушение металлов, многочисленны. Разнообразны и методы защиты от коррозии обработка внешней среды, в которой протекает коррозия защитные покрытия электрохимическая защита изготовление специальных коррозионно устойчивых сплавов из черных и цветных металлов. [c.136]

    Согласно флуктуационной теории прочности, скорость процесса разрушения материала зависит от соотношения энергии активационного барьера и тепловых флуктуаций. Напряжение, уменьшая энергию активации, способствует ускорению разрушения материала. Основная причина появления первичных трещин — деструктивные процессы, протекающие под влиянием механических и тепловых воздействий на покрытие. В месте дефекта концентрируется напряжение, превышающее среднее напряжение на все сечение материала, что приводит к разрыву химических связей, образованию и росту трещин. Образование первичных трещин значительно ускоряется при наличии поверхностно-активной среды. Понижая свободную поверхностную энергию материала, среда способствует образованию местных зародышевых сдвигов на поверхности покрытия и первичных трещин. [c.45]


    Короче говоря, можно сказать, что жидкие каучуки — это вещества, очень похожие по своей химической природе на эпоксидные смолы под действием отвердителей они также могут превращаться в твердые тела. Но в отличие от эпоксидных смол они образуют высокоэластичные, резиноподобные твердые тела, как раз такие, какие лучше всего подходят для защитных покрытий, поскольку в них не возникают или почти не возникают внутрен-ни е напряжения, которые являются основной причиной разрушения жестких покрытий. [c.39]

    Эксплуатация пластмасс, имеющих металлические покрытия, вызывает особые затруднения при наличии механических усилий. Основной причиной является нарушение связи между покрытием и основным слоем из-за внутренних напряжений, возникающих при изменении температуры, вследствие значительного различия коэффициентов линейного расширения металлов и пластмасс. Вероятно, использование пластичного нижнего покрытия (такого, как медь) достаточной толщины позволит предотвратить его отслоение вследствие разной степени расширения и сжатия металлов и пластмасс. Зафиксированы случаи, когда детали из пластмасс с никелевым и хромовым покрытиями разрушались под действием нагрузок в местах углубления или выступов с острыми углами, в то время как подобные пластмассовые детали, не имевшие покрытий, удовлетворительно выдерживали нагрузки. Поломки возникают в местах концентрации напрян<енпй, вызывая разрушение хромового покрытия, после чего трещина распространяется на подслои металла и основной материал — пластмассу. В таких случаях приходилось производить замену деталей. [c.130]

    Однако сцепление любого металлического покрытия с основным металлом может значительно ухудшиться при неправильной предварительной обработке или нанесении покрытий. Для выявления таких дефектов, технологических отклонений или измерения предельной прочности связи в вышеприведенных случаях необходимо провести испытания на адгезию. Из-за трудностей измерения адгезии большинство методов исследования являются эмпирическими и применяются по принципу годится, не годится . По этой причине многие из них не вызывают разрушений при условии, что адгезия покрытия может выдержать испытания. Эти испытания вызывают разрушение, когда образцы не имеют адекватной адгезии покрытия. Ниже описаны методы контроля прочности сцепления покрытий. [c.149]

    Объем продуктов коррозии может превышать в 2—3 раза объем металла, из которого они образовались. Поэтому нередки случаи, когда вследствие коррозии разрушаются железобетонные балки. По этой же причине продукты коррозии часто способствуют разрушению лакокрасочных и полимерных покрытий. [c.14]

    Основными причинами коррозионного разрушения деталей машин в большинстве случаев считают низкое качество защитных покрытий, нарушение правил эксплуатации и хранения техники. Вместе с тем немаловажное значение [c.3]

    Вместе с тем коррозия металла под покрытием может быть причиной возникновения первого предельного состояния в результате накопления под покрытием твердых или газообразных продуктов коррозии, а также разрушения покрытия жидкостью, накапливающейся под покрытием за счет осмотического переноса воды через пленку к растворимым продуктам коррозии. Подпленочная коррозия металла и накапливающиеся продукты коррозии могут снижать адгезионную прочность полимерного покрытия. [c.46]

    Потенциометрические исследования применительно к низкотемпературной коррозии выполнены И. И. Стри-хой [8.9]. Полученные материалы являются по существу первой попыткой применения электрохимических методов исследований коррозии воздухоподогревателей и дымовых труб. Развитие этих методов для энергетики представляется весьма перспективным, так как позволяет вскрыть глубинные особенности и его динамику, недоступные в традиционных методиках. Применение этих приемов желательно при исследованиях причин и характера разрушения эмалированных или покрытых защитными веществами поверхностей, а также при исследованиях ингибирующих добавок. [c.242]

    Выборка по отказам магистральных трубопроводов [1] показывает влияние возрастного фактора трубопроводов на количество аварийных разрушений, более 30% из них приходится на трубопроводы, проработавшие более 20 лет. Анализ статистики аварий показывает, что после 20-25 лет эксплуатации возрастает риск аварий, обусловленный ухудшением состояния трубопроводов. Причины такого ухудшения связаны с механическими и коррозионными воздействиями перекачиваемого продукта и окружающей среды, вызывающими накопление и развитие усталостных и коррозионных повреждений в металле труб. Очагами повреждений чаще всего служат дефекты, возникшие при заводском изготовлении труб, дефекты строительномонтажных работ, участки отслоения, разрушения изоляционного покрытия, В табл. 1.1 приведены определения аварий на магистральных трубопроводах (МТ) по основным причинам в 1997 году [1]. [c.7]


    В случаях, когда изолированные трубы длительное время хранятся на трассе, колебания температуры, солнечная радиация и атмосферные осадки могут вызывать изменение их физико - химических свойств. Во время испытаний трубопроводов на прочность и герметичность наблюдаются продольные и поперечные перемещения на 0,5 - 2 мм, которые могут послужить причиной истирания, сдвига или разрыва антикоррозионного покрытия. При разрушении защитного покрытия обнаженные участки поверхности трубопровода подвергаются почвенной коррозии и коррозии блуждающими токами. [c.13]

    Остроумный метод анализа поверхностей красок, лаков, пластиков, металлов или стекол с применением метода прессования таблеток с КВг бьш описан Джонсоном [69, 70]. Порошок КВг используется для абразивного истирания поверхности, при этом удаляется слой образца толщиной 50—100 А. Затем из этого порошка прессуют таблетку и получают вполне хорошие спектры. Если требуется, то обработку можно проводить повторно и последовательно изучать различные слои. Для того чтобы гарантировать воспроизводимость удаления слоев с поверхности, можно использовать шлифовальный станок. Более быстрым истирающим действием обладает бромистый калий, смешанный с обрезками стальной проволоки, которую потом удаляют магнитом. В качестве примеров можно привести определение углеводородов на стекле, фталевого эфира на нержавеющей стали и амидов на полиэтилене. Исследовались также причины адгезионного разрушения лакокрасочных покрытий, Для исследования распределения концентраций по толщине на внутренних поверхностях артерий и вен они подвергались абразивному действию струи порошкообразного КВг [71], [c.94]

    На примере эпоксидно-аминных покрытий установлено, что причины ухудшения или исчезновения защитного действия различны для разных агрессивных сред в азотной кислоте — это деструкция пленки, в соляной — подпленочная коррозия, а в уксусной, муравьиной и щавелевой — активное набухание и разрыхление структуры пленки [33]. Причем в последнем случае скорость разрушения покрытия зависит от размера молекул кислот. [c.186]

    Основными причинами коррозионного разрушения трубопроводов являются несвоевременный ввод в эксплуатацию средств электрохимической защиты низкое качество нанесения изоляционных покрытий неправильная оценка степени агрессивности грунта. [c.611]

    В процессе теплового старения полимерных покрытий, сопровождающегося снижением эластичности и ростом модуля упругости полимера, происходит увеличение внутренних напряжений [82, 133, 134]. В итоге внутренние напряжения, достигнув критического значения, могут вызвать растрескивание покрытий или их самопроизвольное отслаивание [82, 133]. Внутренние напряжения действуют против сил молекулярного сцепления (когезии), а также против адгезионных сил. Поэтому их можно приравнять длительно действующей нагрузке [108, 135]. В этих условиях растрескивание полимера может быть вызвано напряжением, составляющим 15—50% мгновенного разрывного напряжения [136, 137] наличие внутренних напряжений — одна из основных причин разрушения полимерных покрытий [95, 101, [c.178]

    Коррозионное растрескивание под напряжением (КРН) часто является причиной разрушения подземных газопроводов [12—18]. В катодно защищенных трубопроводах КНР начинается на внешней поверхности трубы, чаще всего в местах нарушения покрытий. Вблизи от участка разрушения под нарушенным покрытием обнаруживают раствор карбоната/бикарбоната натрия, а иногда и кристаллы МаНСОз. Предполагают, что эта среда наиболее благоприятна для КРН. В большинстве конструкций, где применяется катодная защита стали от общей коррозии, сталь поляризуют до потенциала —0,85 В по отношению к Си/Си504-электроду, что соответствует значению —0,53 В по н. в. э. Катодная защита подземных трубопроводов может приводить к накоплению на поверхности трубы щелочных продуктов, например гидроксида натрия, а также растворов карбоната/бикарбоната натрия [19, 20]. Ионы водорода, катионы Na+ и вода, содержащая растворенный кислород, мигрируют к катодным участкам трубы через поры [c.186]

    Наличие в реактивном топливе эмульсионной воды при повьпиен-ных температурах (40—50 °С) является также причиной биохимической коррозии, обусловленной присутствием в топливе микроорганизмов. Максимальный рост микроорганизмов, как правило, наблюдается на поверхности раздела воды и топлива. Наиболее характерна биохимическая коррозия для топливных отсеков, на стенках которых обнаруживается коричневый слизистый осадок, представляющий собой микрозагрязнения топлив, воду и бактерии. При этом наблюдается разрушение полимерных защитных покрытий топливных отсеков и питтинсовая коррозия на поверхности алюминия, иногда настолько глубокая, что топливо просачивается и обнаруживается на поверхности крыла. [c.56]

    Дпя большинства металлов в реальных условиях электрохимическая коррозия протекает гетерогенно-электрохимическим путем, т.е. через локальные элементы. Разные точки поверхности металлов различаются энергией и свойствами, что отражается на кинетике электрохимической реакции. Особенно много таких зон возникает, когда металл содержит инородные включения (рис. 3.4). При наличии электролита с высокой элктропроводностью на этих неоднородностях появляются местные гальванопары, теорию которых разрабатывали де ля РиБ, А.К. Фрумкин, Ф.И. Гизе, H.A. Изгарышев, Г.В. Акимов, А.И. Голубев и др. Однако в том случае, когда интересует только общая величина коррозии, а не распределение ее по поверхности, всю корродирующую поверхность можно считать однородной. Следует иметь в виду, что при такой замене средняя скорость коррозии не определяет опасность коррозионных разрушений (может иметь место питтинговая коррозия). При этом скорость коррозии характеризуется ано,дной плотностью тока Л = //5а, где 5 - площадь анода. Причины появления неоднородности металлов - макро- и микровключения, неоднородность сплава (наличие сварных швов), разнородность металлов, нарушение изоляционного покрытия, наличие на металле окалины, ржавчины, неравномерная деформация, неравномерность приложенных нагрузок и др. [c.37]

    При применении испытательных машин источники шумов — системы нагружения и крепления. Возможной причиной помех может быть разрушение покрытия изделия (лаков, красок) или поверхностного окисного слоя. Чем выше частота, на которой ведут испытание, тем лучше отстойка от шумов, но тем быстрее затухают с расстоянием сигналы АЭ. Это вызывает необходимость близкого расположения ПЭП в системах наблюдения за АЭ некоторых объектов. Отсюда следует, что чрезмерное повышение частоты нежелательно. [c.180]

    Для более углубленного исследования механизма развития коррозионных язв, ЯВЛЯЮП1ИХСЯ, по мнению многих исследователей, источником зарождения трещин [25], было проведено изучение образования язв на плоских образцах из стали 17Г1С, частично покрытых пленочной изоляцией, в условиях одноосного нагружения величиной 0,9 ат в карбонат-бикарбонатной среде (1н. Ма СОз + 1н. ЫаНСОз). Время экспозиции составляло 2000 ч, а величина наложенного потенциала - минус 1,0 В (ХСЭ). Температура в электрохимической ячейке изменялась по режиму 60-50 °С - 12 ч, 20 °С - 12 ч. Через 100 ч экспозиции на свободной от изолирующей пленки поверхности было обнаружено равномерное подтравливание стали, аналогичное наблюдаемому в очаговых зонах разрушения магистральных газопроводов по причине КР, а через 1000 ч - глубокие язвы (рис. 2.4). При этом под отслоившейся изоляцией наблюдалось подтравливание стали, аналогичное наблюдаемому при 100-часовой экспозиции. Во всех случаях травление стали происходило вдоль текстуры прокатки. Внутри коррозионных язв обнаружены отложения солей угольной кислоты белого цвета. При дальнейшей экспозиции область язвенной коррозии покрывалась черной [c.78]

    Хрупкие разрушения металла подогревателя со стороны греющего пара отмечались при работе блоков на нейтрально-окислительном водном режиме [91. Змеевики и перегородки пароохладителей поврежденных ПВД были покрыты слоем легкоотслаива-ющихся продуктов коррозии (до 4 мм). Наблюдалось охрупчивание металла и его обезуглероживание в зоне повреждений, причем наименьшее количество углерода обнаружено в металле, контактирующем с паром. В нем обнаружено также повышенное содержание водорода. Основная причина этого— коррозия с водородной деполяризацией, вызванная действием пузырьков диоксида углерода, прилипаемость которых способствует упариванию [c.173]

    Результаты прямых измерений глубины коррозии труб с защитным покрытием и без покрытия после эксплуатации различной продолжительности в паровых котлах, работающих на сернистом мазуте, приведены в табл. 14.1 [2]. Как видно из приведенных в ней данных, коррозия хромированных труб значительно (в некоторых случаях в десятки раз) меньше, чем незащищенных труб. Скорость коррозии увеличивается при повышении температуры и кроме того зависит от других факторов. Большая скорость коррозии труб в НРЧ, чем в ППВД, вызвана периодическим разрушением оксидного слоя из-за многократных колебаний температуры металла, обусловленного пульсацией горения. Возникающие вследствие этого термические напряжения в поверхностном слое труб являются причиной другого вида их повреждений— образования трещин коррозионно-термической усталости. Расчеты показывают, что за 6350 ч работы труб в НРЧ количество циклов колебания термических напряжений более 10. Однако образование термоусталостных трещин происходит только в нехромированных трубах. Их глубина весьма значительна (см. табл. 14.1) и увеличивается с увеличением продолжительности эксплуатации. В то же время на хромированных трубах термоусталостных трещин не образуется даже после 13 600 ч. Металлографическим анализом установлено, что в трещины не превращаются и микроде- [c.243]

    Электрохимическими исследованиями, проведенными совместно с А.М.Крохмальным [208, с. 57—61], установлено рис. 100), что стационарный потенциал цинкового покрь Тия равен примерно -870 мВ, т.е. на 300-320 мВ отрицательнее стационарных потенциалов сталей. За 12 сут испытаний без приложения циклических напряжений (что соответствует базовому количеству циклов вращения 5 10 цикл) потенциалы оцинкованных образцов сдвигаются до — (780 — 800 мВ) вследствие формирования на поверхности плотного слоя оксидо-солевых продуктов коррозии, состоящих из оксидов и гидрооксида цинка. При высоких механических напряжениях происходит смещение электродных потенциалов стали на 80—100 мВ в отрицательную сторону от стационарного значения. Величина смещения потенциалов растет с уменьшением прочности стали и повышением уровня приложенного напряжения. Воздействие циклических напряжений в начале испытаний приводит к появлению в слое трещин, достигающих основного металла, что является причиной резкого смещения потенциала. На последующих этапах испытаний потенциалы образцов сдвигаются в положительную сторону на 30-50 мВ, а затем относительно стабилизируются (см.рис. 100, // участок кривой 3), что связано с пассивацией ювенильных поверхностей покрытия и контактированием коррозионной среды через трещины со сталью, имеющей более положительный потенциал, чем покрытие. Сдвиг потенци4ла в положительную область увеличивается с ростом уровня напряжений и понижением прочности стали, так как эти факторы усиливают разрушение покрытия, и площадь оголенной стали увеличивается. Потенциал образовавшейся коррозионной системы покрытие — основа лежит в достаточно отрицательной области (—900 мВ и ниже), поэтому поверхность стали находится в условиях полной электрохимической защиты в результате протекторного действия покрытия. Однако влияние высоких напряжений без коррозионного фактора приводит к развитию разрушения в глубь стали, что сопровождается интенсивным смещением потенциала в положительную сторону /// участок). Полное разрушение образца сопровождается резким сдвигом потенциала в отрицательную сторону IV участок). [c.186]

    КОАЛ ЕСЦЕНЦИЯ, слияние капель или газовых пузырьков при их соприкосновении. Происходит в объеме дисперсионной среды или на пов-сти к.-л. тела и является причиной разрушения эмульсий и пен. Наличие в сист. ПАВ-стабили-заторов препятствует К. вследствие образования защитных адсорбционно-сольватных слоев на пов-сти капель йли пузырьков. Степень и скорость К. регулируют т-рой, перемешиванием, центрифугированием, введением ПАВ, электролитов и др. К. происходит, напр., при обезвоживании нефти, при орг. синтезах в эмульсиях, при изгртовлении латексных изделий, нанесении лакокрасочных покрытий аэрозольным методом. [c.261]

    Основной причиной разрушения резьбовых деталей является невозможность получения достоверных сведений о величине усилий, действующих на эти детали во время монтажа и эксплуатации, так как отсутствуют методы экспериментального определения этих усилий. Зачастую у резьбовой детали свободным является только один торец, поверхность которого считается не подверженной деформации, что не позволяет применить ни один из известных физических методов определения напряжений (электротензометрию, рентгеновскую тензометрию, методы магнитоупругости, фотоупругих покрытий и т.д.). При исследованиях на моделях и в редких случаях на практике используют специально изготовленные тензометрические болты. Однако в производственных условиях, когда требуется контроль 100 % продукции, этот метод оказы- [c.179]

    Блуждающие токи являются причиной серьезных коррозионных разрушений подземных коммуникаций и сооружений в промышленной зоне. Блуждающие постоянные то1си появляются вследствие утечки в грунт постоянного тока, потребляемого наземным и подземным рельсовым транспортом (метро, трамвай, электрифицированная железная дорога), электросварочными агрегатами. Участки, где блуждающие токи входят из земли в металлическую конструкцию, становятся катодами, а там, где ток стекает с металла в почву — анодами. Интенсивность коррозионных повреждений находится в прямой зависимости от величины блуждающих токов и подчиняется закону Фарадея. Протекание тока величиной в 1 А в течение года соответствует растворению около 9 кг железа. В некоторых неблагоприятных случаях были зарегистрированы блуждающие токи величиной до 200-500 А. Отсюда видно насколько интенсивными могут быть повреждения от блуждающих токов. Если анодная область равномерно распределена по большой поверхности, коррозионные потери могут и не вызывать аварийных разрушений, но в местах нарушения неметаллического защитного покрытия коррозионные разрушения происходят быстро. [c.156]

    В резервуарном парке очистных сооружений Кама-Исмагиловский УКПП НГДУ Татнефть 21.05.87 произошло разрушение резервуара РВС-5000 с пожаром. Причиной аварии явилось коррозионное разрушение верхних опорных конструкций центральной стойки и щитов покрытия, что привело к разрыву стенки резервуара и его полному разрушению. Одновременно с разрушением этого резервуара произошел отрыв технологических обвязочных трубопроводов на соседнем резервуаре, в результате чего произошло его разрушение и загорание находящейся в нем нефти. Гидродинамической волной было разрушено земляное обвалование, и горящая нефть устремилась на пруды-отстойники. Площадь пожара составила более 9 тыс.м . Причина аварии - низкое качество монтажных работ при сооружении технологических конденсатопроводов в здании насосной. [c.16]


Смотреть страницы где упоминается термин Покрытия разрушение, причины: [c.36]    [c.192]    [c.8]    [c.130]    [c.162]    [c.190]    [c.127]    [c.63]   
Коррозия (1981) -- [ c.534 ]




ПОИСК





Смотрите так же термины и статьи:

Разрушения причины

причины



© 2024 chem21.info Реклама на сайте