Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганическая химия металлы и их соединения

    Синтез и исследование довольно устойчивых координационных соединений щелочных металлов с макроциклическими лигандами позволили создать координационную химию щелочных металлов Получены, выделены и изучены сотни координационных соединений лития, натрия, калия, рубидия и цезия Большой интерес с точки зрения неорганической химии представляют растворы щелочных метал- [c.20]


    Использование взаимодействия катализатора с носителем является важнейшим методом стабилизации состава и поверхности, особенно оксидных катализаторов и носителей (см. разд. 3.1.2). Неорганическая химия таких соединений кобальта и молибдена как оксиды или оксисульфиды может служить руководством для модификаций носителей, предназначенных для получения максимально развитой поверхности и ее стабилизации. В этой связи представляет, в частности, интерес образование таких сложных оксидов как оксиды переходных п щелочноземельных металлов [2]. [c.225]

    Выделение металло-энзимов (ме-талло-коэнзимов) в отдельную (в какой-то мере, особую) группу природных соединений связано с их химическим строением они являются комплексными соединениями металлов и их солей с органическими лигандами различной природы, образуя класс природных соединений симбиозом органических и неорганических субстанций Т.е. это действительно тот класс соединений, который не может быть единолично отнесен ни к органической, ни к неорганической химии — он однозначно дитя химии природных соединений. [c.353]

    Галогены образуют бесчисленное множество органических соединений,. но методы получения органических фторидов и некоторые из их необычных свойств представляют интерес с точки зрения неорганической химии. Фторирование соединений других галогенов с помощью фторидов металлов обсуждалось в разд. 20.3. Эти методы дороги,, и для промышленного использования были предложены другие, более дешевые. [c.392]

    В последнюю четверть века в обиход органической химии, помимо классических элементов-органогенов, стало входить все большее число металлов и неметаллов, образующих часто довольно сложные комплексные соединения. Возникшая на этой основе элементоорганическая химия тесно переплелась с неорганической химией координационных соединений, соединив органическую и неорганическую главы общей химии. [c.65]

    Практическое значение комплексных соединений исключн-гельно велико. Комплексные соединения широко применяются в технологических процессах. Так, например, в гидрометаллургии они используются для извлечения нужных элементов из руд. В аналитической хидмии их используют для переведения в раствор, отделения и открытия тех или иных элементов. Широко применяются они и в препаративной неорганической химии. Комплексные соединения входят в состав электролитов, нз которых гальваническим путем наносятся металлические покрытия. Образование на поверхности металла прочной, нерастворимой и химически стойкой пленки, состоящей из комплексных соединений с некоторыми веществами (ингибиторы коррозии), защищает металл от коррозионных воздействий. Комплексные соединения служат промежуточными веществами в некоторых [c.71]


    Углерод способен образовывать соединения с большим количеством элементов периодической системы Д. И. Менделеева. Сам углерод (в виде простого вещества), его окислы, соли угольной кислоты, соединения углерода с металлами (карбиды) и с серой (сероуглерод) изучает неорганическая химия. Остальные соединения углерода — вещества органические. Исследованием их свойств занимается органическая химия. Поэтому органической химией называют химию соединений углерода. [c.3]

    Обычно из числа соединений углерода к органическим веществам причисляют те, которые по своему составу, строению и свойствам являются жизненно важными углеродсодержащими соединениями. Это справедливо для большинства соединений углерода. Однако существует значительное число углеродсодержащих соединений, которые построены совсем иначе и имеют другой состав по сравнению с упомянутыми выше веществами, от которых они поэтому существенно отличаются своими свойствами. Примером могут служить карбиды металлов. Такие соединения углерода относят к неорганическим соединениям. Следовательно, понятия соединения углерода и органические соединения не совпадают. Элементарный углерод относится также к области неорганической химии. Простейшие соединения углерода и прежде всего его окись и отвечающая ей кислота, как и простейшие углеводороды, можно отнести как к неорганическим, так и к органическим соединениям. [c.15]

    Почти все отравляющие вещества, имеющие военное значение, являются органическими соединениями. Кроме двойной соли аммонийбериллийфторида, которую можно использовать для заражения воды, мышьяковистого и фосфористого водородов, обладающих общетоксическим действием, но не применимых вследствие неподходящих физических свойств, не имеется других не органических токсичных соединений, пригодных для военных целей. В настоящее время трудно провести границу между органической и неорганической химией. Металлоорганические соединения занимают промежуточное положение, и среди них имеются соединения, которые могут иметь определенное военно-химическое значение, — это некоторые карбонилы металлов и тетраэтилсвинец. Для большинства органических ОВ, нашедших применение в качестве боевых химических веществ, характерно наличие гетероатомов. Сильнодействующие отравляющие вещества (а только такие здесь и рассматриваются), кроме некоторых ядов животного и растительного мира, таких, как кантаридин или окись углерода, в редких случаях состоят только из трех главных элементов — углерода, водорода и кислорода. Обычно в них входят элементы, наличие которых и придает им токсические свойства прн действии на теплокровные организмы фтор, хлор, сера, азот, фосфор и мышьяк. Те элементы, которые входят в состав металлоорганических соединений, здесь не упомянуты. [c.33]

    Очень широко распространены комплексные соединения ионов металлов с различными полярными органическими и неорганическими молекулами (последние в химии комплексных соединений называются лигандами). В этих соединениях связь может осуще- [c.33]

    Первая в мировой литературе монография, посвященная бурно развивающейся области химии — химии кластерных соединений металлов, — нашедшей к настоящему времени выход в практику (покрытия, композиционные материалы, катализ). Ф. Коттон широко известен советским химикам фундаментальными работами и книгами (Коттон Ф., Уилкинсон Дж., Современная неорганическая химия. — М. Мир, 1969 Коттон Ф., Уилкинсон Дж. Основы неорганической химии.— М. Мир, 1979). [c.672]

    Металлоорганическими называют соединения, в которых имеется связь между атомом углерода и атомом металла. Таких соединений известно очень много, и в настоящее время химия металлоорганических соединений превратилась в обширную область, пограничную между органической и неорганической химией. Многие связи углерод — металл, например связь углерод-ртуть, несомненно являются ковалентными, но в связях между углеродом и более активными металлами электроны расположены ближе к атому углерода. Вопрос о том, достаточно ли близко расположены электроны к атому углерода в данной связи, что позволяет назвать ее ионной, а углеродную часть молекулы карбанионом, зависит от природы металла, строения углеродной части, природы растворителя и во многих случаях является лишь предметом умозрительных предположений. В настоящем разделе обсуждаются главным образом карбанионы, а в следующем разделе будет рассмотрено строение металлоорганических соединений. [c.227]

    Простые вещества и химические соединения, которые встречаются в неживой природе, как, например, горные породы, минералы, руды, вода, воздух и металлы, были отнесены к области неорганической химии. [c.292]

    Сложность написания учебного пособия к лабораторным работам по общей химии определяется тем, что оно должно охватывать работы по общей, неорганической, аналитической (качественный и количественный анализы), физической, органической химии, химии высокомолекулярных соединений, электрохимии и, наконец, работы или опыты, специфичные для конкретных специальностей (открытие металлов, анализ сплавов, анализ воды, технический анализ извести и др.). [c.3]


    Поскольку уравнение Гаммета приложимо к реакциям металлорганических соединений, в которых связь С—Ме принимает участие в реакционном акте, следует ожидать, что с помощью набора а-констант можно коррелировать также скорости и равновесия другой промежуточной между органической и неорганической химией группы соединений — комплексных соединений металлов, включающих органические лиганды. Возникающая в этих соединениях ковалентная или донорно-акцепторная связь между донорными центрами органических лигандов (обычно атомы О, N. 5 и др.) н ионами металлов по своей природе аналогична связи С—Ме. Ее прочность зависит от двух факторов 1) ст-связывания, которому способствует повышение эффективного отрицательного заряда на донорном центре, и 2) л-связываник, являющегося результатом включения с1 (или р)-орбит ме галла в общую молекулярную орбиту с л-иодобными электронами ненасыщенного лиганда. л-Связыванию способствует пониженная электронная плотность на донорном центре лиганда, так как при этом донором л-электронов является металл, а л-акце ггором — лиганд. [c.277]

    Леа Александрович Чугаев принадлежит к числу наиболее выдающихся советских химиков. Родился в Москве, а 1895 г, окончил Московский университет. В 1904 — 1908 г. — профессор Московского высшего технического училища, в 1908 —1922 г. — профессор неорганической химии Петербургского университета и одновременно (с 1909 г.) — профессор органической химии Петербургского технологического института. Занимался изуче нием химии комплексных соединений переходных металлов, в особенности метал- лов платиновой группы Открыл много новых комплексных соединений, важных в теоретической и практическом отношениях. Чугаев впервые обратил внимание иа особую устойчивость 5- и 6-члениых циклов во внутренней сфере комплексных соединеинй и охарактеризовал кислотно-основные свойства аммиакатов платины (IV). Он был одннм нз основоположников применения органических реагентов в аналитической химии. Много внимания уделял организации и развитию промышленности по добыче и переработке платины и платиновых металлов I СССР. Созда./ большую отечественную школу химикоз-неоргаников, работающих а области изучения химии комплексных соединений, [c.588]

    Для возникновения бионеорганической химии необходим был достаточно высокий уровень развития неорганической химии, который был достигнут во второй половине XX в. благодаря использованию метода молекулярных орбиталей и современных физических методов изучения электронной и геометрической структуры вещества, а также высокий уровень развития биологии, достигнутый за последнее десятилетие в области молекулярной биологии. Методы и подходы современной координационной химии стали широко использоваться в биохимии и молекулярной биологии при исследовании металлоферментов и других биологически важных соединений, функционирование которых связано с присутствием металлов и других элементов неорганогенов. [c.560]

    Первоначальное понятие о комплексных соединениях, образованных центральным атомом или ионом металла и совокупностью ( luster) ионов или молекул, именуемых лигандами (число которых называют координационным числом), в последнее время было расширено, и теперь оно охватывает большую часть неорганических соединений в молекулярном (растворы) или кристаллическом (твердые тела) состоянии. Нихолм [4] указывает, что химию комплексных соединений следует рассматривать как некоторый подход к неорганической химии, а не просто как один из ее разделов и что в связи с этим она должна быть полезной для понимания как гомогенного, так и гетерогенного катализа. Нас интересует динамика обратимых изменений координационного числа и степени окисления центрального атома, и мы [c.15]

    В ЭТОЙ главе будут изложены основные представления о функционировании биологических систем с участием ионов металлов. Хотя N, S, О, Р, С н Н — это основные элементы, участвующие в формировании строительных блоков биологических соединений, живым организмам необходимы также некоторые ионы металлов. Далее мы увидим, что взаимодействия ионов металлов с молекулами природных соединений имеют, как правило, координационную природу, и в иервую очередь роль ионов состоит в поддержании нейтральности зарядов. Кроме того, эти ионы нередко участвуют в каталитических ироцессах. Таким образом, предмет обсуждения данной главы находится на грани органической и неорганической химии. [c.342]

    ХИМИЯ ПЛАЗМЫ. Плазма — ионизованный газ, используется как среда, в которой протекают в[лсокотемператур-ные химические процессы. С помощью плазмы достигают температуры около миллиона градусов. Плазма, используемая в химии, в сравнении с термоядерной считается низкотемпературной (1500—3500 С). Несмотря на это, в химии и химической технологии она дает возможность достижения самых высоких температур. В химии плазма используется как носитель высокой температуры для осуществления эндотермических реакций или воздействия на жаростойкие материалы ири их исследовании. Технически перспективными процессами X. п. считаются окисление атмосферного азота, получение ацетилена электро-крекингом метана и других углеводородов, а также синтез других ценных неорганических и органических соединений. Специальными разделами X. п. является плазменная металлургия — получение особо чистых металлов и неметаллов действием водородной плазмы на оксиды или галогениды металлов, обработка поверхностей металлов кислородной плазмой для получения жаростойких оксидных пленок или очистки поверхности (в случае полимеров). К X. п. примыкают также процессы фотохимии (напр., получение озона). Здесь фотохимический процесс протекает в той же плазме, которая служит источником излучения. [c.275]

    В химии координационных соединений атом металла называют центральным атомом, или центром координации, а связанные с ним органические молекулы или радикалы, а также неорганические ионы — лигандами (адендами). [c.350]

    Периодический закон — научная основа и метод многочисленных исследований. Назовем некоторые направления (темы), которые еще ждут дальнейших исследований. Это работы но теории химической связи и электронной структуры молекул химия комплексных соединений, включая редкоземельные элементы, а также соединения, имеющие полупроводниковый характер получение гю-лупроводниковых материалов, развитие химии твердого тела, синтез твердых материалов с заданным составом, структурой и свойствами поиски новых материалов на основе твердых растворов изоморфных боридов, карбидов, нитридов и оксидов переходных металлов IV и V групп получение сплавов и катализаторов на основе переходных элементов синтез неорганических веществ, включая неорганические полимеры получение веществ высокой [c.427]

    Раннее изучение неорганических комплексов состояло, главным образом, из серии попыток объяснить существование и структур гидратов, двойных солей и аммиакатов солей металлов. Эти вещества были названы молекулярными или аддитивными соедине ниями, так как они образованы соединением устойчивых и кажу щихся насыщенными молекул. Ранние теории и объяснения, пред ложенные такими учеными, как Трем (1837 г.), Клаус (1854 г.), Бломстранд (1869 г.) и Йоргенсен (1878 г.), имеют в настоящее время несколько большее чем только историческое значение, по скольку координационная теория, предложенная Альфредом Вер нером в 1893 г., обобщила все, что в них было заключено. Эта тео рия, развитая и подкрепленная экспериментальными исследова ниями в течение последующих 25 лет, главным образом ответст венна за вызванный интерес к неорганической химии и быстрое е развитие на рубеже двух столетий. [c.232]

    Основным объектом изучения в химии координационных соединений являются ионы и молекулы, состоящие из центральной частицы и координированных вокруг нее лигандов (аддендов). Строго говоря, понятие комплексные соединения шире, чем понятие координационные соединения . Оно включает в себя также молекулярные комплексы, в которых невозможно указать центр координации, а также соединения включения. Тем не менее, координационные соединения часто называют просто комплексами, и мы тоже будем следовать этой традиции. Как правило, центральной частицей ( ядром координации) является катион металла или оксокатион типа 1)022+, д лигандами могут быть ионы либо молекулы неорганической, органической или элементоргани-ческой природы. Друг с другом лиганды либо не связаны и взаимно отталкиваются, либо соединены силами межмолекулярного притяжения типа водородной связи. Совокупность непосредственно связанных с ядром лигандов называют внутренней координационной сферой. [c.11]

    Пособие (первая часть вышла в 1986 г.) написано по материалам курса Неорганическая химия , который читается академиком В. И. Спи-цыным более 40 лет на химическом факультете Московского университета и отражает современное состояние химии. Особое внимание уделено закономерностям в изменении свойств и строения основных типов простых и сложных соединений, образованных элементами-металлами. Учебное пособие знакомит читателя с вопросами радиохимии и геохимии, знакомство с которыми необходимо для правильного рассмотрения проблем неорганической химии н технологии неорганических материалов. [c.2]

    Предлагаемое пособие, в котором б(зльшее, чем обычно, внимание уделено комплексам непереходных металлов и другим лабильным комплексам, написано на основе лекций, прочитанных для студентов IV курса химического факультета Томского университета, специализирующихся по неорганической химии. Содержание построено с учетом того, что дополнительные сведения по изучаемому-предмету сообщаются в курсах Строение вещества и спектры и Ме-,тоды исследования неорганических соединений . [c.3]

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]

    В настояш,ее время подавляющее большинство неорганических соединений можно рассматривать как комплексные, а учение о комп-лексообразовапии пронизывает всю неорганическую химию и особенно химию металлов. [c.207]

    Хотя рассмотренные выше результаты еще не позволяют говорить о применении органических металлов как о немедленной практической перспективе, они, тем не менее, позволяют вести в дальнейшем уже не случайный, а целенаправленный поиск соединений, обладающих требуемыми структурными характеристиками. Таким образом, в число целей органического синтеза оказывается включенной задача получения структур, оптимальным образом приспособленных для решения чисто физических проблем — задача, которая еще недавно нaxoдИJ a ъ исключительно в поле компетенции неорганической химии и собственно физики. [c.58]

    Восстановнтсльные свойства натрия стали известны вскоре после его открытия Вначале натрий применяли в неорганической химии прежде всего при получении металлического алюминия из его солей Примерно в середине протлого столетия натрий стали крименять и для восстановлеиии органических соединений Известны три метода проведения процесса- 1) амальгамой натрия, 2) металлическим натрием и спиртом, 3) аммиачными растворами металла. [c.44]

    Сотрудниками кафедры неорганической химии ведется систематическое изучение комплексных соединений переходных металлов с moho- (МЭА), ди- (ДЭА) и триэтаноламином (ТЭА), которые представляют собой весьма интересные в комплексохимическом отношении бифункциональные полидентатные лиганды. [c.164]

    В некоторых случаях дифракция рентгеновских лучей может быть использована для определения абсолютной конфигурации оптически активных веществ. В 1951 г. Бижро, Пирдеман и ван Боммель изучили натриеворубидиевую соль (+)-винной кислоты с помощью дифракции рентгеновских лучей и нашли, что ее абсолютная конфигурация соответствует той, которая была произвольно выбрана Фишером из двух возможных энантиоморфных структур 100 лет назад. Дифракция рентгеновских лучей находит также широкое применение в неорганической химии при определении как структур, так и правильных формул многих гидридов бора и карбонильных комплексов металлов, которым ранее были приписаны ошибочные формулы. Во многих случаях дифракция является единственным практическим методом установления правильного состава соединений. При изучении искусственно полученных элементов— нептуния, плутония, кюрия и америция — стало возможным быстро устанавливать их чистоту и химический состав, используя чрезвычайно малые количества вещества и не разрушая образцы. [c.583]

    Общие свойства соединений переходных металлов рассматриваются в соответствующих разделах неорганической химии [18], а также в монографии [1] опубликовано также значительное число обзоров, посвященных более частным проблемам. Среди этих проблем в настоящее время наибольшее внимание привлекает химия ферроцена [19, 20], а также химия и технология металлоценов [21, 22]. Значительное число работ посвящено химии органических соединений титана, циркония и гафния [23, 24], а также никеля [c.242]

    За основу любой естественной науки принимается классификация объектов исследования. В основе классификации в неорганической химии лежат химические элементы — металлы и неметаллы, т. е. периодическая система элементов, а также классы и группы образуемых ими химических соединений — кислот и оснований, оксидов и гидрадов, простых и комплексных солей, интерэлементных соединений. [c.18]


Смотреть страницы где упоминается термин Неорганическая химия металлы и их соединения: [c.16]    [c.313]    [c.3]    [c.48]    [c.94]    [c.195]    [c.363]    [c.237]    [c.290]    [c.75]    [c.24]    [c.1470]    [c.2105]    [c.441]    [c.21]    [c.13]    [c.202]   
Научно-исследовательские организации в области химии США, Англии, Италии, ФРГ, Франции и Японии (1971) -- [ c.25 , c.28 , c.34 , c.44 , c.56 , c.60 , c.87 , c.138 , c.144 , c.155 , c.156 , c.158 , c.167 , c.183 , c.194 , c.198 , c.206 , c.241 , c.256 , c.265 , c.266 , c.277 , c.280 , c.286 , c.288 , c.295 , c.304 , c.309 , c.341 , c.351 , c.373 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы соединения

Химия неорганическая



© 2025 chem21.info Реклама на сайте