Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Неорганические ионы

    Оптико-спектроскопические методы, используемые в промышленном контроле, могут быть разделены на две основные группы электронная спектроскопия (спектроскопия в ультрафиолетовой и видимой областях спектра) и колебательная спектроскопия (спектроскопия в инфракрасной, ближней инфракрасной (ВИК) областях спектра, а также рамановская спектроскопия). В УФ и видимой областях спектра поглощение обусловлено переходами между атомными или молекулярными электронными энергетическими уровнями. Переходы между электронными энергетическими уровнями могут происходить только в том случае, если энергия падающего фотона соответствует разности энергий соответствующих уровней. Эти энергетические уровни для ближней ультрафиолетовой и видимой областей имеются в изолированных атомах, отдельных неорганических ионах, органических соединениях, содержащих сопряженные двойные связи, и большом числе разнообразных молекулярных веществ. Поглощение в ультрафиолетовой и видимой областях очень сильное, поэтому возможно определение концентраций на уровне нескольких частей на миллион. Однако полосы поглощения обычно очень широкие по сравнению с [c.656]


    Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]

    Уравнения (3.37) — (3.39) хорошо описывают многие свойства двойного электрического слоя при специфической адсорбции на идеально поляризуемых электродах органических и неорганических ионов, а также нейтральных органических молекул. В последнем случае 2 =0 и при достаточно высокой концентрации поверхностно-неактивного электролита фона, когда ф , уравнения (3.37) — (3.39) переходят в уравнения разработанной А. Н. Фрумкиным (1926) модели двух параллельных конденсаторов, обеспечивающей количественную интерпретацию опытных о, Е -и С, -кривых при адсорбции многих простых алифатических соединений. С другой стороны, при малых заполнениях поверхности специфически адсорбированными неорганическими ионами. модель Алексеева — Попова — Колотыркина переходит в модель Грэма — Парсонса. [c.147]

    Химический анализ неорганических веществ обычно осуществляют в водных растворах. В подавляющем большинстве случаев при этом используют ионные реакции. Взаимодействие между противоположно заряженными ионами протекает практически мгновенно. Однако реакции между одинаково заряженными ионами, а также между ионами и молекулами во многих случаях оказываются медленными. Так, например, медленно протекают многие окислительно-восстановительные реакции. [c.39]


    Ионные решетки характерны для большинства неорганических соединений (соли, оксиды и другие классы соединений). Многие минералы также имеют ионное строение. Так, кристаллы, имеющие ионную решетку, как правило, хорошо растворимы в воде, а растворы их обладают высокой электрической проводимостью. В твердом виде ионные кристаллы не проводят электрический ток, так как в них электроны прочно удерживаются в атомных орбиталях отдельных ионов. В расплавленном состоянии кристаллические вещества проводят электрический ток, причем проводимость осуществляется замечет переноса ионов. Электрическая проводимость расплавов является характерным свойством любых ионных структур. [c.32]

    Такое исследование может бт>1ть проведено на окислительно-восстановительных элементах, электроды которых содержат неорганические ионы переменной зарядности, нанример Ре Ре Ы0з Ы02 [Ре ( N),i [Ре (СЫ)ц1 Сг Ст , а также элементы, одним из электродов которых является каломельный электрод, другим — любая окнслительно-восстановительная система нанример [c.317]

    Для модифицирования электродов применяют также неорганические пленки общей формулы (Ма)п[Мв(СК)6], где Мв = Ре, Об, Ки, например, берлинскую лазурь или ее аналоги. Такие пленки получают непосредственно на электродной поверхности при анодном растворении материала электрода в присутствии цианид-ионов. Селективность пленок по отношению к ионам металлов, их прочность и проницаемость зависят от состава и структуры поли-ядерных покрытий. Некоторые пленки, например Мо(СК)8 , ведут себя подобно цеолитам. Особенно многообещающими являются системы на основе гексацианоферратов 1п(Ш) и Ки(1П). Пленки на их основе имеют высокую устойчивость к воздействию агрессивных сред. Такие электроды применяют для вольтамперометрического определения тиолов и дисульфидов. Электроды из стеклоуглерода, модифицированные гексацианоферратами, применяются в качестве амперометрических детекторов в проточных системах, особенно при определении серосодержащих соединений, которые загрязняют электроды других типов. [c.485]

    Другие неорганические ионы в низших степенях окисления также можно определять посредством титрования раствором иода, например мышьяк(1И), ва-надий(1У), ртуть(1). Таким способом определяют кислоты-восстановители, например сероводород, сернистую кислоту, тиосульфат и др. Иод окисляет также многие органические вещества соединения, содержащие альдегидные группы, азот-, и серосодержащие соединения, оксисоединения и др. [c.412]

    Для специфической адсорбции неорганических ионов из смешанных растворов с постоянной ионной силой М. А. Воротынцевым была развита модельная теория, учитывающая дискретный характер и конечный объем специфически адсорбированных ионов, экранирование их зарядов электронной плазмой металла и ионной плазмой диффузного слоя, а также возможный частичный перенос заряда в результате донорно-акцепторного взаимодействия этих ионов с электродом. Теория ограничена условиями неизменности емкости плотного слоя при адсорбции ионов и малыми величинами заполнения ими поверхности, но ее достоинством кроме строго физического подхода является то, что ПОМИМО опытных значений дифференциальной емкости плотного слоя в растворе поверхностно-неактивного электролита (Сог) уравнения теории содержат только два подгоночных параметра. Одним из них является свободная энергия адсорбции ДО а при фо =0 и ионной силе раствора с-> О, другим — безразмерный параметр А, который характеризует диэлектрические свойства плотного слоя и ге- [c.147]

    Это стадия инициирования-, она может начаться спонтанно или может быть индуцирована нагреванием или облучением (см. обсуждение в т. 1, разд. 5.9) в зависимости от типа связи. В качестве источника свободных радикалов, расщепляющегося спонтанно или при нагревании, чаще всего используют пероксиды, в том числе пероксид водорода, диалкил-, диацил- и алкил-ацилпероксиды, перкислоты, а также некоторые другие органические соединения с низкой энергией связей, например азосоединения. Среди молекул, расщепляющихся под действием света, наиболее часто используемым источником радикалов являются хлор, бром и различные кетоны (см. т. 1, гл. 7). Другой путь образования радикалов — одноэлектронный перенос (потеря или приобретение электрона), например А+ + е - ->А-. Одноэлектронный перенос характерен для неорганических ионов или электрохимических процессов. [c.54]

    Неорганические ионы, а также молекулы органических соединений, которые у электродов отдают или принимают электроны, можно идентифицировать по полярограммам. При постепенном увеличении напряжения, приложенного к полярографической ячейке, наблюдаются волнообразные возрастания тока. Каждый компонент дает аналитический сигнал (полярографическую волну) при вполне определенном значении напряжения, что используют для их распознавания. [c.14]


    Используемую для получения пластмасс, синтетических волокон, ионитов и других материалов с ценными свойствами, итако-новую кислоту в промышленных масштабах получают при сбраживании сахаросодержащих сред. Растворы после брожения содержат 4—6% итаконовой кислоты, 0,5—1,5% сахара, до 0,6% красящих веществ, другие органические кислоты, образующиеся в качестве побочных продуктов при брожении, а также неорганические ионы. [c.295]

    При полярографировании органических соединений имеет также значение замедленность процесса восстановления и частая необратимость этого процесса. Вследствие этого волны получаются очень растянутыми и их труднее измерять, чем волны неорганических ионов. [c.510]

    Соли и буферные растворы. Во многих случаях в состав подвижных фаз помимо воды и органических растворителей входят также неорганические соли или ион-парные агенты. Они могут стать источником дополнительных примесей в подвижной фазе и отрицательно сказаться на результатах. Так, ион-парные агенты могут содержать органические соединения, для [c.207]

    Таким образом, влияние состава и концентрации фона проявляется при полярографических исследованиях как неорганических ионов, так и органических соединений неионного типа, а также веществ, которые могут образовывать комплексы с компонентами фона. Кроме того, фон может влиять и на состояние деполяризатора в растворе. Так, молекулы акролеина в растворах с рН 8 претерпевают полимеризацию, превращаясь в невосстанавливаемую форму, в связи с чем полярографическая волна акролеина может быть получена только в кислых или нейтральных растворах. Второй пример диффузионный ток не- которых карбонильных соединений, особенно в спиртовых сре- [c.15]

    Все же использование значений 1/2, которые для различных классов органических соединений (как и для неорганических ионов) различны и специфичны, может дать приближенную информацию о наличии определенных функциональных групп в исследуемых соединениях (или определенных ионов в исследуемом растворе). А если использовать еще и некоторые дополнительные приемы (взаимодействие с различными реагентами и последующее полярографирование получаемых продуктов, изменение pH фона и др.) то можно сделать в большинстве случаев вполне достоверные заключения о качественной природе исследуемых химических соединений (см. также [1, 3]). [c.60]

    В книге описан синтез большого числа органических реагентов различных классов (кислород-, серу,- селен-, фосфор-, азотсодержащих и др.), предложенных в последние 10—15 лет для обнаружения и количественного определения неорганических ионов. Наряду с реагентами, которые достаточно подробно изучены и входят в практику аналитических лабораторий, даны также методики синтеза ряда мало изученных реагентов, которые потенциально могуг представлять несомненный интерес для неорганического анализа. Приводятся методики синтеза органических реагентов, которые не выпускаются промышленностью, по крайней мере в достаточном количестве и надлежащего качества, и получение которых не описано в руководствах по органическому синтезу. Методики в большинстве случаев проверены в нашей лаборатории в течение 15 лет. В некоторые из них внесены изменения, повышающие выход или чистоту препаратов. [c.5]

    В химии координационных соединений атом металла называют центральным атомом, или центром координации, а связанные с ним органические молекулы или радикалы, а также неорганические ионы — лигандами (адендами). [c.350]

    Для получения ацетиленида серебра используется щелочная среда, так как прежде всего нужно оторвать протон от алкина раствор должен также содержать ионы серебра. К сожалению, гидроксид серебра довольно плохо растворяется в воде, поэтому используется раствор неорганических реагентов (NaOH + AgNOg + HgO), к которому добавляется аммиак. В этих условиях большая часть серебра находится в виде комплексного иона iAg(NH3)2] , а концентрация свободных ионов серебра достаточно низка, и это препятствует осаждению гидроксида серебра. Этот реагент обычно называют аммиачным раствором оксида серебра. [c.359]

    Этот анион, по-видимому, легко обменивается через поверхность раздела фаз с 0Н . При наличии других, более липофильных неорганических ионов экстракция ОН , а также экстракция и транспорт НООС (СН2)4СОО частично ингибируются. [c.65]

    К твердым атомных веществам относится огромное количество органических и неорганических полимеров, такие простые твердые вещества, как алмаз, кремний и другие неметаллы и металлы, а также твердые ионные соединения. Объединяющим показателем для них является то, гго эти вещества построены посредством межатомных связей. В отличие от молекулярных твердых соединений, которые всегда имеют кристаллическую структуру, атомные твердые вещества могут обладать как кристаллической, так и аморфной структурой. Металлы и ионные соединения характеризуются кристагшической структурой и в обычных условиях не образуют аморфных тел. Для полимерных материалов характерно пребывание в аморфном состоянии. Главным структурообразующим фактором для полимеров служат ковалентные связи, образующие одно-, двух- или трехмерные остовы -макромолекулярные части структуры полимерного материала. При помощи дополнительного структурообразующего фактора - ван-дер-ваальсовых и [c.108]

    В ЭТОЙ главе будут изложены основные представления о функционировании биологических систем с участием ионов металлов. Хотя N, S, О, Р, С н Н — это основные элементы, участвующие в формировании строительных блоков биологических соединений, живым организмам необходимы также некоторые ионы металлов. Далее мы увидим, что взаимодействия ионов металлов с молекулами природных соединений имеют, как правило, координационную природу, и в иервую очередь роль ионов состоит в поддержании нейтральности зарядов. Кроме того, эти ионы нередко участвуют в каталитических ироцессах. Таким образом, предмет обсуждения данной главы находится на грани органической и неорганической химии. [c.342]

    Если малорастворимое соединение диссоциировано не полностью, в растворе наряду с ионами существуют продукты его неполной диссоциации и, нередко, молекулы малорастворимого соединения. Это характерно для соединений, образованных неорганическими ионами с органическими реагентами (8-оксихиноли-ном, диметилглиоксимом и т. д.), а также для многих сульфидов, некоторых галогенидоБ и других соединений. Растворение неполностью диссоциированного соединения МА происходит по схеме [c.85]

    Из закономерностей электрофореза вытекает важный практический вывод, что скорость движения взвешенных в жидкости частиц не зависит от их размера и в изученных случаях находится в пределах от 10 до 40- 10- см1сек. Эта величина близка к подвижности простых неорганических ионов (кроме ионов Н+ и ОН ). Скорость не зависит также от. заряда частиц. Хевеши [c.229]

    Окислительно-восстановительная хроматография неорганических ионов в гелях исследована Н. М. Морозовой, А. С. Конищевой и А. Ф. Кобелецкой [45]. Принятая ими методика получения хроматограмм аналогична получению диффузионных осадочных хроматограмм (см. стр. 196) с той лишь разницей, что в гель вносится вместо осадителя окислитель. В различных гелях (желатина, агар-агар), со--держащих окислитель, при изменении концентрации хроматографируемого раствора имеет место пропорциональное изменение высоты зоны диффузионной оксихроматограммы. Последняя зависит также от концентрации окислителя и длительности диффузии. [c.224]

    При ионном обмене на сильнокислотных сульфокатиони-тах и сильноосновных анионитах, а также неорганических ионообменниках, не обладающих комплексообразующими свойствами наблюдается только электростатическое притяжение ионов к ионогенным (фиксированным) группам ионита. Электростатическое притяжение тем сильнее, чем больше величина заряда и чем меньше радиус гидратированного иона, т. е. чем выше плотность заряда иона. Поэтому можно ожидать более селективное поглощение высокозарядных ионов по сравнению с низкозарядными, если радиусы соответствующих гидратированных ионов не слишком различаются. [c.184]

    Для качественного анализа можно нспользоватт. собственную люминесценцию, а также реакции образования комплексных соединений неорганических ионов с органическими реагентами, в результате чего появляется люминесценция. Так, многие катионы с 8-гидроксихинолином образуют соединения с характерной люминесценцией, бериллий с морином обра- [c.359]

    При приготовлении смол для предварительной пропитки в качестве катализаторов используют гидроксиды кальция, магния или бария, которые в конце реакции осаждают серной кислотой. Одно из основных требований, предъявляемых к смолам, идущим на изготовление изделий электротехнического назначения, — низкое содержание неорганических ионов. Прн изготовлении смол можно применять только депоннзованную воду. Катализаторами получения смол для основной пропитки служат аммиак или гексаметилентетрамин для этой цели также пригодны амины. [c.186]

    Маскировка (в аналитической химии) — связывание мешающих ионов в малодис-социированные комплексные соединения при обнаружении, определении и отделении каких-либо компонентов анализируемого объекта. Напр., железо (П ) мешает определению никеля (II) при осаждении диметилглиоксимо.м, так как железо (III) одновременно осаждается в виде Ре(ОН)з. Но если в раствор ввести винную кислоту, образующую с железом (III) малодиссоциирующий растворимый комплекс, то оно не будет осаждаться и мешать определению никеля. Для М. широко применяются органические кислоты (лимонная, винная, уксусная, щавелевая и др,), комплексоны, а также неорганические соединения, напр, фториды, цианиды и др. [c.80]

    Облегчение переноса электрона происходит и при осаждении на поверхности рабочего электрода пленки из проводящего полимерного материала. При этом аналитический сигнал наблюдается даже для таких соединений, которые на обычных электродах не проявляют электрохимической активности. Некоторые полимерные покрытия, например поли-(З-мбтилтиофен), препятствуют адсорбции продуктов реакции на поверхности электрода. Для модифицирования поверхности электродов используют также неорганические пленки общей формулы (M ) [M ( N)6], которые могут быть получены непосредственно на электроде при анодном растворении соответствующего металла в присутствии цианид-ионов. Такие пленки имеют более высокую прочность по сравнению с полимерными покрытиями. [c.570]

    Центральную роль в энергообмене клеток всех типов играет аденилатная система, которая включает в себя трпфос-фат, дифосфат и 5 -монофосфат аденозина (АТР, ADP и АМР соответственно), а также неорганический фосфат (Р ) и ионы магния. Аденозинтрифосфат является термодинамически неустойчивой молекулой и гидролизуется с образованием ADP [c.221]

    Относительная влажность может существенно влиять и на процессы жидко-жидкостного распределения, если вода является неподвижной фазой. Однако предсказать характер изменения Ш трудно. Обычно разделение неорганических ионов на силикагеле [88] при использовании в качестве растворителей водных растворов органических кислот или смеси ацетона и 1н НСЮ4 (95 5) сопровождается снижением значений Кг при увеличении влажности. Влага, содержащаяся в воздухе, влияет также на результаты хроматографического разделения на бумаге (см., например, рис. 43 в публикации [4]). [c.349]

    Неионообменная порошковая целлюлоза применяется в качестве носителя при распределительной хроматографии и электрофорезе на колонках и в слоях. Целлюлоза используется для хроматографического разделения сахаров, глицеридов, спиртов, фенолов, аминов, карбоновых и аминокислот, пептидов, белков, нуклеиновых кислот, уроновых кислот, липидов, алкалоидов, антибиотиков, гормонов, ферментов, витаминов, гербицидов и инсектицидов, неорганических ионов, красителей, углеводородов и других веществ. Применяется также для электрофореза белков, пептидов, аминокислот, нуклеиновых кислот, нуклеотидов. [c.127]

    Следует отметить, что более широкому распространению метода ВСЖХ препятствует не только высокая стоимость оборудования, но также то обстоятельство, что конструкционные материалы используемой аппаратуры не достаточно устойчивы к действию растворов минеральных кислот и других веществ, которые обычно применяют в процессе разделения неорганических ионов. Кроме того, возникают некоторые трудности вследствие многократного изменения концентрации элюирующего агента в процессе разделения и отсутствия соответствующих детекторов. Однако можно надеяться, что эти проблемы будут решены в ближайшем будущем. [c.119]

    Окислительное действие кислорода. Молекулярный кислород— сильный окислитель, под действием которого окисляются многие органические и неорганические соединения. В результате присоединения электронов к Оа образуются ионы парамагнитный надпероксид-ион Ог (называемый также гипероксо-ионом, супероксо-ионом и т. п.) и диамагнитный пероксид-ион ОГ (пероксо-ион, пероксогруппа, кислородный мостик) при этом следует учесть, что достоверную величину сродства к электрону для Ог в вакууме получить не удалось (табл. 3.2). В водном растворе в зависимости от условий в той или иной форме протекают реакции с образованием различных соединений. В табл. 3.3 приведены значения электродных потенциалов для ряда реакций окисления и связанных с ними систем. Стандартный электродный потенциал о связан с изменением гиббсовской энергии реакции с другой стороны, его можно связать также с константой равновесия реакции /С  [c.95]


Смотреть страницы где упоминается термин также Неорганические ионы: [c.126]    [c.248]    [c.248]    [c.298]    [c.45]    [c.67]    [c.316]    [c.196]    [c.169]    [c.209]    [c.210]    [c.16]   
Биология Том3 Изд3 (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Неорганические иониты. Иониты

Неорганические иониты. Иониты неорганические



© 2025 chem21.info Реклама на сайте