Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные кислоты температура плавления

    Олеиновая кислота СНз (СНз) СН=СН(СН2), СООН — ненасыщенная одноосновная жирная кислота входит в виде глицеридов в состав многих жидких и твердых жиров льняного, оливкового, хлопкового, миндального, подсолнечного, кокосового (пальмового) масел, свиного сала и т. п. Из смеси кислот, получаемых при омылении жиров, олеиновая кислота выделяется в виде ее свинцовой соли, растворимой в эфире. Температура плавления кислоты около 14° С, температура кипения 223° С при 10 мм рт. ст., плотность 0,898 г см при 14° С. Требования к качеству технической олеиновой кислоты (олеину) приведены в табл. 12. 16. [c.681]


    Насыщенные кислоты плавятся при более высоких температурах, чем ненасыщенные кислоты с тем же числом атомов углерода. В ряду ненасыщенных кислот температура плавления понижается с увеличением числа двойных связей, что хорошо прослеживается на примере олеиновой, линолевой и линоленовой кислот. Насыщенные высшие жирные кислоты при комнатной температуре — твердые вещества, а ненасыщенные — жидкости. [c.425]

    Температура плавления жирных кислот зависит, однако, не только от длины углеродной цепи. В молекуле стеариновой кислоты, как я уже говорил, 18 атомов углерода. При этом все они соединены между собой одинарными связями, стеариновая кислота является предельной. [c.159]

    Нефтяной парафин представляет собой смесь углеводородов метанового ряда со значительным преобладанием молекул нормального строения. Мягкий парафин (температура плавления 40—42°) применяется главным образом в спичечной промышленности, для пропитки бумаги, в кожевенной и текстильной промышленности и т. д. Твердые парафины (температура плавления 50—52°) находят наиболее широкое применение в свечном производстве, а также для некоторых областей пропитки. Из процессов химической переработки парафинов в Германии наибольший интерес представляет производство жирных кислот на основе твердых парафинов (см. главу VI Окисление парафиновых углеводородов , стр. 432, или раздел Исходное сырье для процесса окисления парафина , стр. 444). [c.49]

    На заводах в качестве сырья для получения синтетических жирных кислот используются твердые парафины с температурой плавления 52—54° С. Окисление парафина осуществляется кислородом воздуха при температуре 105—120° С в присутствии катализатора [74]. В качестве катализатора применяется перманганат калия в количестве 0,2% от веса исходного парафина. Процесс окисления периодический. Единовременная загрузка окислительной колонны — 30 т смеси свежего и возвратного парафина, [c.149]

    Высшие жирные спирты (ВЖС) — техническое название смесей одноатомных насыщенных спиртов алифатического ряда с числом углеродных атомов в молекуле от 6 до 20. ВЖС получают методами органического синтеза, почему называются также синтетическими жирными спиртами (СЖС). В дальнейшем, как и в случае кислот, под термином ВЖС понимаются СЖС. Физические свойства ВЖС зависят от их молярной массы, ВЖС с числом атомов углерода в цепи от 6 до 11 представляют жидкости с температурами кипения 157—286°С, с большим числом углеродных атомов — твердые легкоплавкие вещества светло-желтого цвета с температурами плавления от -5 до 65°С. Все ВЖС легче воды (плотность 0,6—0,7 т/м ). Растворимы в этаноле и диэтиловом эфире. Растворимость в воде падает с увеличением молярной массы и спирты, начиная с g в воде практически нерастворимы. ВЖС огнеопасны. Взрывоопасность паров ВЖС в смеси с воздухом увеличивается с уменьшением молярной массы. ПДК для ВЖС равна 10 мг/м . [c.283]


    Жирные кислоты с короткими молекулами при комнатной температуре представляют собой жидкости. Например, у каприловой кислоты температура плавления всего 16 С. Если же число атомов углерода в молекуле десять или больше, то такие жирные кислоты уже представляют собой твердые вещества. Например, стеариновая кислота плавится только при 69°С. [c.159]

    Это процесс беспорядочного перераспределения жирных кислот в глицеридах. Он улучшает свойства пищевых жиров, особенно лярда, используемого для жаренья пищи. Реакцию ведут при температуре 55-9Э°С с 0,2% метоксида натрия в качестве катализатора жир должен быть сухим. Когда устанавливается равновесие, цвет жира меняется от светло-коричневого до темно-коричневого и температура плавления перестает снижаться. Катализатор разрущается под действием воды, образующееся при этом мыло удаляют, метиловые эфиры, чтобы уничтожить запах, удаляют продувкой водяным паром, [c.331]

    Многочисленные данные свидетельствуют о том, что клетки микроорганизмов, растений и животных адаптивно изменяют состав жирных кислот (жиров) при изменении температуры окружающей среды. При температуре тела организма 7] ниже оптимальной наблюдается увеличение содержания ненасыщенных жирных кислот (жирнокислотных остатков), имеющих более низкую (по сравнению с насыщенными и другими ненасыщенными кислотами) температуру плавления. Это увеличение легко фиксируется по росту йодного числа соответствующих жирнокислотных фракций. При температуре выше оптимальной в клетках увеличивается доля насыщенных (предельных) кислот, имеющих более высокую температуру плавления. [c.17]

    Жиры и масла природного происхождения — важные составные части нашей пищи и источники энергии. Твердые жиры животного происхождения являются эфирами преимущественно насыщенных кислот, жидкие растительные масла имеют в составе молекул группы —НС=СН —. Различие в температурах плавления связано с тем, что насыщенные углеводородные цепи могут быть упакованы плотнее, чем ненасыщенные, тем более, что непредельный фрагмент в жирных кислотах имеет всегда конфигурацию, поэтому цепи изогнуты и не могут плотно прилегать друг к другу. Животные жиры ценятся выше, чем масла, поэтому значительное количество масел превращают гидрированием в маргарин (см. разд. 27.1.4.2). В последнее время было установлено, что растительные масла лучше, чем жиры, усваиваются организмом и снижают уровень холестерина в крови, однако этот вопрос еще далеко не ясен. [c.723]

    У насыщенных жирных кислот температуры плавления возрастают с увеличением молекулярной массы. У ненасыщенных жирных кислот на температуру плавления влияют не столько двойные связи, сколько их положение в цепи и пространственное расположение отдельных частей молекулы. [c.22]

    Не только в отношении растворимости, но и в отнощении температур плавления существует периодичность в гомологическом ряду кислоты с четным числом атомов углерода плавятся при более высокой температуре, чем с нечетным. В противоположность жирным одноосновным кислотам температуры плавления двухосновных кислот понижаются с увеличением молекулярного веса, по крайней мере в ряду кислот с четным числом углеродных атомов. [c.336]

    С увеличением числа углеродных атомов в молекулах жирных кислот температура их плавления увеличивается. Жирные кислоты могут быть твердыми веществами (например, стеариновая) либо жидкими (например, линолевая, арахидоновая) они не растворимы в воде и весьма слабо растворимы в спирте. [c.187]

    Объектом многочисленных исследований было получение жирных кислот из нефтяного сырья (особенно парафина) для мыловарения или производства синтетических жиров [314—318]. Производство синтетических жирных кислот вызывает особый интерес в условиях нехватки натуральных жиров (например, в военное время). При невысоких температурах и атмосферном давлении реакция окисления парафина воздухом протекает очень медленно. В реакционной смеси окисления парафина (температура плавления -Ь55° С) при 110° С даже через 280 часов после начала процесса было обнаружено очень мало продуктов окисления [319, 320]. [c.586]

    Очищенный парафин по внешнему виду — белая или просвечивающаяся масса, слегка жирная на ощупь, без запаха и вкуса. Парафин водонепроницаем и горюч, растворяется в легком бензине, бензоле, ацетоне, хлороформе, этиловом эфире, сероуглероде, дихлорэтане, в кипящем этиловом спирте, а в нагретом виде — в нефтепродуктах и некоторых растительных маслах. Многими красящими веществами парафин может быть окрашен. При комнатной температуре парафин устойчив к действию минеральных кислот и щелочей. Например, легко разъедающий стекло 40% водный раствор фтористоводородной кислоты может храниться в сосуде, изготовленном из парафина. Свойства парафина значительно изменяются в зависимости от содержания в нем низкоплавких углеводородов, непредельных соединений, смолистых веществ, различных механических и других примесей. Эти примеси придают парафину желтый цвет, снижают его твердость, уменьшают температуру плавления. [c.265]


    Натриевые смазки применяются при повышенных температурах, так как высокие температуры плавления натриевого мыла позволяют сохранять механические свойства до температур 110—200° С. Высокотемпературные смазки готовятся на высоковязких остаточных маслах. На синтетических жирных кислотах могут изготовляться смазки особо устойчивые по отношению к термическим воздействиям. Натриевые смазки, предназначенные для использования при низких температурах, готовятся на маловязких маслах с хорошими низкотемпературными свойствами. [c.189]

    Жиры характеризуют следующие физико-химические константы температура плавления, (молекулярная масса тем выше, чем больше жирных кислот, входящих в состав жира) йодное число, характеризующее количество ненасыщенных жирных кислот кислотное число, которое показывает содержание свободных жирных кислот в жире число омыления, которое характеризует количество сложных эфиров в жире. [c.27]

    Например, жидкие спирты с длинной цепью (и жидкие жирные кислоты на неактивных поверхностях), несмотря на высокую полярность и хорошую адсорбируемость на поверхности металла, являются худшими граничными смазками, чем парафины, плохо адсорбируемые поверхностью, но обладающие большой продольной когезией. При повышении температуры до плавления парафина [c.152]

    При перегонке высококипящих продуктов синтеза с водяным паром в ваку ме получают мягкий и плиточный парафин (фракция 320-460 С) и твердый парафин-церезин. Фракцию 320-380 (парафиновый гач) можно использовать в дв>т( направлениях. Из нее выделяют парафиновые углеводороды с температурой плавления 50-52 С, являющиеся сырьем для производства синтетических жирных кислот, а при термическом или каталитическом крекинге гача получают олефины, при ректификации которых отбирают несколько фракций. [c.117]

    Температуры плавления в гомологическом ряду возрастают, но не равномерно. Кислоты с четным числом углеродных атомов плавятся при более высокой температуре, чем следующие за ними и имеющие на один атом углерода больше. Жирные кислоты ио своей температуре плавления распадаются на два ряда один охватывает кислоты с четным числом углеродных атомов, а второй — с нечетным их числом (Байер). В обоих этих рядах разности температур плавления двух следующих друг за другом членов постепенно уменьшаются (табл. 15). [c.242]

    Наиболее распространены консистентные смазки, имеющие в качестве загустителей мыла высших жирных кислот. Из немыльных загустителей большое распространение получили церезин и парафин. Консистентные смазки, изготовляемые на немыльных загустителях, имеют более низкую температуру плавления, чем смазки, в состав которых входит мыло. [c.415]

    Твердые парафины направляются на окисление с целью получения искусственных жирных кислот и спиртов (а из последних синтетических моющих средств). Однако для> окисления в жирные кислоты пригодны в основном лишь парафины с температурой плавления 50—54°, выкипающие в пределах 320—450°, а для окисления в спирты — с температурой плавления 28—32° высокоплавкие же парафины, плавящиеся выше 58° (выкипающие выше 450°), могут быть направлены на крекинг для получения моноолефинов.. [c.9]

    Данные, приведенные в табл. 9, показывают, что с увеличением молекулярного веса повышается температура кипения и уменьшается плотность кислот. Если температуры кипения жирных кислот плавно возрастают по мере увеличения в молекуле кислоты количества атомов углерода, то для температур плавления этих кислот отмечено следующее интересное явление температура плавления кислоты с четным числом углеродных ато-аов в молекуле выше температур плавления двух соседних кислот [c.223]

    Кашалотовый жир состоит из 56—70% жирных кислот и 28—45% неомыляемых веществ. Температура его плавления 20—30°С, отвердения 17—28°С (ГОСТ 8714—58). [c.35]

    Трнацилглицеролы, содержащие остатки только насыщенньк жирньк кислот, при комнатной температуре имеют консистенцию твердого вещества. Примером может служить тристеарин-основной компонент говяжьего сала. Три-ацилглицеролы, содержащие три ненасыщенные жирные кислоты (например, триолеин-основной компонент оливкового масла), при комнатной температуре находятся в жидком состоянии. Сливочное масло представляет собой смесь триацилглицеролов, причем в состав некоторьк из них входят жирные кислоты с относительно короткими цепями поскольку с укорочением цепи жирной кислоты температура ее плавления снижается, сливочное масло при комнатной температуре имеет мягкую консистенцию (табл. 12-3). [c.329]

    Первая диаграмма показывает замедленное выделение теплоты плавления. В этом случае переход из жидкого состояния жирных кислот в твердое сопровождается прекращением падения температуры на некоторое время, после чего оно продолжается. Температура застывания жирных кислот здесь соответствует прямой ав, параллельной оси абсцисс. На второй и третьей диаграммах показанд>1 случаи быстрого выделения теплоты плавления, когда в момент застывания жирных кислот температура после плавного снижения заметно повышается до определенного максимума, а затем опять начинает падать. Здесь температура застывания соответствует точкам Ь. [c.238]

    Выше указывалось, что основными критериями оцеИки свойств парафинов, используемых для получения жирных кислот, служат содержание в нем масла и температура плавления. [c.154]

    Для большинства целей требуется парафин с высокой температурой плавления. Поэтому все усилия направлены к тому, чтобы по возможности повысить ее. Отметим здесь процесс-Либриха, 1 позволяющий повысить температуру плавления с 42 до 70° добавлецием 101% анилида или амида жирных кислот. При этом не происходит реакции присоединения с образованием вещества с более высокой температурой плавления, а повышение температуры плавления зависит единственно от того факта, что па рафин и но достижении своей температуры плавления остается еще включенным среди твердого анилида. [c.129]

    Исследование смазок ведется и в физическом, и в химическом направлении определяется температура плавления и довольно редко температура вспышки (для этого можно пользоваться прибором Бренкена). Затем исследуется содержание свободных кислот (оно должно быть минимальным), мыла, жирных масел необмыленных, минеральных масел, извести, наполнителей и воды. [c.313]

    Применительно к ректификации высококипящих жирных кислот Янцен и Тидке предложили весьма удобное устройство для определения температуры затвердевания веществ с высокой температурой плавления (см. рис. 390). В этом устройстве, так же как и в приборе Тиле для определения температуры плавления, дистиллят (или флегма) сначала попадает через капельницу 3 в капилляр 5, омываемый термостатирующей жидкостью. Понижая температуру этой жидкости, определяют температуру затвердевания дистиллята по показаниям термометра 4. По байпасной трубке 2 в приемник 1 поступают следующие порции исследуемой жидкости. Повышая затем температуру термостатирующей жидкости, определяют таким же образом температуру плавления исследуемой жидкости. [c.458]

    Температура разрушения смазочной пленки, образованной жирными кислотами, лежит на 50—70° выше температуры плавления соответствующих кислот (рис. 32) и приблизительно собт-ветствует началу размягчения или плавления их металлических мыл. Авторы делают вывод, что при данных условиях трения на [c.150]

    Полиэфиры жирных кислот, например себациновой, сравнительно легко 1 идролизующиеся при действии растворов кислот и щелочей, находят применение в качестве искусственных восков, которые, как и природные воски, обладают высокой кристалличностью, низкой температурой плавления и резким переходом ич гвердого в жидкое состояние (рис. 102). Эти оке полиэфиры применяют как пласти( )икаторы и исходные ке.цества в синтезах некоторых полиуретанов и полиамидов. [c.422]

    В заключение отметим, что адсорбция жирных кислот и ряда других по-вер.чностно-активных веществ из их растроров в неполярных жидкостях может приводить, к формированию на поверхности твердых тел граничных полимолекулярных слоев толщиною 0,05—0,5 к.км. Как показали Б. В. Дерягин с сотр. и Г И. Фукс с сотр,, механические свонствг таких слоев отличаются от свойств объемных слоев раствора и зависят от структуры и молекулярного веса молекул поверхностно-активного вещества. Было также показано, что толщина граничного слоя растворов жирных кислот к гексане или бензоле является линейной функцией длины углеводородного радикала, а температура плавления> этого слоя (снижение механических свойств до значения свойств объема раствора) зависит от температуры плавления соответствующих поверхностно-активных веществ. Граничные слои обеспечивают устойчивость дисперсных систем в неполярных жидкостях и играют важную роль в действии смазочных масел. [c.143]

    Основная масса консистентных смазок получается на кальциевых, натриевых, алюминиевых и литиевых солях жирных кислот. Соли некоторых металлов позволяют получать смазки с высокой температурой плавления и хорошей пластичностью при низких температурах (литий), другие — с высокой температуфой плавления и водоустойчивостью (кальций). Омыляемым компонентом 12  [c.179]

    Жиры депо создают один из метаболических энергетических резервов живых систем. Это преимущественно триацилпроиз-водные глицерина (разд. 5.2). В целом триглицериды животного происхождения отличаются от триглицеридов многих растительных масел высоким содержанием насыщенных ацильных групп. Существует четкая корреляция между степенью ненасы-щенности и температурой плавления триглицеридов. Высоконенасыщенные растительные масла имеют очень низкую температуру плавления, тогда как животные жиры при обычной температуре обычно твердые вещества. В результате промышленной гидрогенизации растительных жиров образуется маргарин — продукт, обладающий физическими свойствами, сходными со свойствами типичного животного жира. Различие в физических свойствах обусловлено различием строения молекул насыщенных и ненасыщенных жирных кислот, которое особенно наглядно проявляется при рассмотрении формы молекулы с растянутой конформацией углеродных цепей  [c.332]

    В условиях ректификации высококипящих жирных кислот Янцен п Тгвдке применили удобное устройство для определения температуры затвердевания веществ с высокой температурой плавления (рис. 421). Первоначально дистиллат или орошение Попадает через капельницу в капилляр, омываемый термостатирующей [c.515]

    Степень ненасыщенности жиров определяют по йодному числу — количеству иода в граммах, которое присоединяется к 100 г жира. Для определения йодного числа применяют растворы хлористого иода I I, бромистого иода 1Вг или меркуриодхлорида Hg b, которые более реакдионноспособны, чем сам иод. Содержание в жире жирных кислот, отгоняющихся с водяным паром (кислотны С12 и ниже), выражается числом Рейхерта—Мейсля. Если надо охарактеризовать область плавления жира (его титр), указывают температуру, при которой расплавленный жир начинает затвердевать. Число омыления жира, выраженное количеством едкого кали в миллиграммах, необходимым для гид-ролиза 1 S жира, характеризует его средний молекулярный вес. [c.587]

    При омылении была получена несколько необычная смесь кислот. В ней присутствовало большое количество пальмитиновой кислоты и только следы обычных жирных кислот ia вместо них был найден ряд редких жирных кислот. Путем разложения до более простых соединений было доказано, что одна из них, названная туберкулостеариновой кислотой, является 10-метилстеариновой кислотой. Интересно, что метильная группа, разветвляющая цепь, понижает температуру плавления с 70°С (стеариновая кислота) до 10—11°С. Первоначально казалось, что природная туберкулостеариновая кислота оптически недеятельна, однако позднее Кэзон показал, что она является одним из двух эпимеров, обладающим очень слабым оптическим вращением. Этот вывод был сделан на основании сравнения природной туберкулостеариновой кислоты с синтетическими ( + )- и (—)-формами, полученными из дека-нола-2. Деканол-2 был разделен на оптические антиподы кристаллизацией соли его кислого фталата с бруцином. Каждая из полученных активных форм спирта была далее подвергнута следующему ряду превращений  [c.619]


Смотреть страницы где упоминается термин Жирные кислоты температура плавления: [c.173]    [c.586]    [c.573]    [c.328]    [c.200]    [c.815]    [c.815]    [c.266]    [c.56]    [c.217]    [c.305]    [c.113]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.815 , c.816 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.815 , c.816 ]




ПОИСК





Смотрите так же термины и статьи:

Температура жирных кислот

Температура плавления



© 2024 chem21.info Реклама на сайте