Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уксусная кислота спектр ЯМР

Рис. 111. УФ-спектр фенокси-уксусной кислоты в изопропиловом спирте Рис. 111. УФ-спектр <a href="/info/508377">фенокси-уксусной кислоты</a> в изопропиловом спирте

Рис. 67. Зависимость смещения частоты СО-группы в спектрах растворов карбоновых кислот в спиртах от силы кислот, выраженной в рЛ отн (стандарт — уксусная кислота). Рис. 67. Зависимость <a href="/info/382205">смещения частоты</a> СО-группы в <a href="/info/5275">спектрах растворов</a> <a href="/info/1050">карбоновых кислот</a> в спиртах от <a href="/info/100318">силы кислот</a>, выраженной в рЛ отн (стандарт — уксусная кислота).
    Наиболее простым спектром ЯМ.Р, состоящим из одного сигнала, обладают молекулы, все магнитные ядра которых эквивалентны и не содержат магнитных ядер другого изотопа. Спектр молекул, которые содержат два и большее число различных ядер, совсем не обязательно должен состоять из такого же числа резонансных сигналов (пиков). В качестве примера могут служить спектры ПМР уксусной кислоты и уксусного альдегида (рис. 28 . Оба соединения содержат два типа эквивалентных протонов и строение их сходно, поэтому можно было бы предполагать различие в основном в химических сдвигах отдельных сигналов. В действительности же спектры ПМР этих соединений существенно различаются уксусная кислота дает два одиночных сигнала, а уксусный альдегид дает два сигнала, обнаруживающие сверхтонкую структуру. [c.75]

    Рассмотрим такой пример. Химические сдвиги смеси бензола и циклогексана различаются. Следовательно, можно ожидать, что в спектре ПМР их смеси будет наблюдаться два отдельных пика. Действительно, один из пиков соответствует бензолу, другой — циклогексану. По интегральной интенсивности каждого из этих сигналов можно определить содержание веществ в этой смеси. Возьмем другую смесь НзО + СНаСООН. Сколько пиков будет в этой смеси Спектр ПМР уксусной кислоты состоит из двух линий одна из них отвечает СООН-группе, другая— СНз-группе. Соотношение интенсивностей 1 3 соответственно числу поглощающих протонов. В спектре ПМР воды присутствует только один синглет протонов, находящийся в области примерно между сигналами протонов карбоксильной и метильной групп. [c.116]

    Рис, 28, ПМР-спектр уксусной кислоты (а — 2,07 м. д., б— 11,97 м. д.) и уксусного альдегида (а — 2,17 м, д,, 6 — 9,72 м, д.). [c.76]

    На основании исследования теплоты смешения, вязкости, плотности, электропроводности, поверхностного натяжения, термического анализа и раман-спектров систем муравьиная кислота — вода и уксусная кислота — вода А. А. Глаголева установила образование соединений состава НСООН-НзО и НСООН-гНаО. [c.250]

    Исследование спектров комбинационного рассеяния света растворов анилина и п-нитроанилина в муравьиной и уксусной кислотах, произведенное П. П. Шорыгиным, показало, что эти спектры подобны спектрам анилинов в ацетоне и что в спектрах растворов не происходит изменений, которыми характеризуется образование солей, нанример солянокислых. Это говорит о том, что, вероятно, анилин связан с кетонами и кислотами эа счет водородной связи. [c.252]


    Определите содержание воды в растворе уксусной кислоты, в спектре ПМР которого есть два синглета при 9 м. д. и 2 м. д. с соотношением площадей 1 3 соответственно, при условии, что сигналы карбоксильного протона и метильной группы в безводной уксусной кислоте равны 12 м. д. и [c.125]

    Определения проводят в видимой области спектра при одной длине волны, при которой поглощают все анализируемые изомеры. Средой для титрования служат безводная уксусная кислота, ее смесь с ацетоном или метилэтилкетоном (1 4). В качестве титранта применяют [c.461]

    Для удаления примесей, поглощающих в ультрафиолетовой области спектра, хроматографическую бумагу типа ленинградская следует промыть 2 н. раствором уксусной кислоты и затем отмыть дистиллированной водой до нейтральной реакции. [c.178]

    Рис. VIII. 18 иллюстрирует чувствительность спектров ЭПР трирадикала к растворителям. Интересно, что в уксусной кислоте спектр трирадикала соответствует спектру ЭПР бирадикала. Это означает в данном растворителе реализуются такие конформации трирадикала, в которых обменное взаимодействие достаточно велико лишь для одной пары спинов, например /12 > а, но /13 О, J23 KI 0. Фактически это означает, что каждый из трех спинов выключается поочередно из обмена. [c.251]

    ИК-спектры многих окисей биссульфидов и смесей продуктов окисления имеют широкую полосу в области 3200—3600 см , аналогичную полосе в спектрах поглощения растворов пиридина с водой [14]. Удалить воду из ассоциатов окисей вторичных, третичных биссульфидов и окисей биссульфидов из природных меркаптанов довольно трудно, так каК при температуре выше 50—60° происходит разложение продуктов. При перекристаллизации продуктов окисления, отгонке растворителей и хроматографировании на окиси алюминия наблюдается образование примесей с ненасыщенной связью. Появление подобных соединений можно объяснить, вероятнее всего, протеканием реакции Пуммерера [3]. Нам удалось выделить хроматографированием дисульфон ацетилтиоэфира (LIV) предполагаемого строения из продуктов окисления биссульфидов из нефтяных меркаптанов перекисью водорода в уксусной кислоте. [c.65]

    В ИК-спектрах поглощения продуктов окисления биссульфидов из природных меркаптанов, полученных окислением в уксусной кислоте перекисью водорода, имеется полоса 3200—3600см . Наряду с этим, в спектре имеются полосы сульфоновой (ИЗО и 1300 см ), карбонильной (1720 см ) и мономерно-кислотной (1750, 1420, 1230 см ) групп. Дополнительная промывка раствором соды и водой, хроматографирование на колонке бензолом (или н-гептаном и эфиром) мало меняет вид спектра продуктов окисления. Очевидно, уксусная кислота, как и вода, может частично удерживаться в ассоциатах продуктов окисления. Разветвленное строение алки/.ьных радикалов у биссульфидов из природных меркаптанов усиливает такое удержание молекул кислоты и воды в ассоциатах. [c.66]

Рис. 19. Сигналы протонов ОН-группы в спектре Н-ЯМР-смеси ацетнлацетона и уксусной кислоты при различных те.мпературах (в С) (по данным Шнейдера и Ривса) Рис. 19. Сигналы протонов ОН-группы в спектре Н-ЯМР-смеси <a href="/info/57128">ацетнлацетона</a> и <a href="/info/1357">уксусной кислоты</a> при различных те.<a href="/info/430471">мпературах</a> (в С) (по данным Шнейдера и Ривса)
    Затем к охлажденной льдом смеси добавляли по каплям 100 мл 15% НС1 и избыток о-ксилола отгоняли с водяным паром. Из перегонной колбы водный слой сливали с осадка, а остатки воды удаляли азеотропной перегонкой с бензолом. Продукт из остатка экстрагировали последовательно горячим бензолом и хлороформом экстракты обесцвечивали кипячением с активированным углем. После отгонки из экстрактов растворителей и перекристаллизации остатка из ледяной уксусной кислоты получили 26 г (24%) кристаллического продукта, из которого, многократной перекристаллизацией из смеси бензол-н. гексан (1 1) выделили 18 г продукта с т. пл. 180— 18Г (I) и 3,8 г продукта с т. пл. 121—122° (II), Дополнительную очистку II проводили путем перекристаллизации из ацетона. 1,т. пл. 180—181° ИК-спектр, см- 875 (изолированный Н в бк ), 1380, 1455, 2865, 2925,. 2955 (СНз). Найдено, % С 70,5 Н 6,1 S 23,0. СюН З . Вычногено, % С 70,59 Н 5,9 S 23,19. II, т. пл. 125—126° ИК-спектр, см 825 (два смежных Н вбк), 877 (изолированный Н в бк), 1375, 1460, 2864, 2925, 294S (СНз). Найдено, % С70,4 Н 6,0 .S 23,1. igHieSa- Вычислено, % С 70,59 Н 5,9 S 23,19. [c.216]

    Кинетические измерения проводят в стандартных кварцевых кюветах толщиной 1 см. За кинетикой реакции следят по выделению уксусной кислоты в ходе облучения. Концентрацию образовавшейся ускусной кислоты определяют спектрофотометрически с использованием индикатора бромфенолового синего. Для этого индикатора характерно наличие в спектре поглощения двух максимумов цри 430 и 593 нм. Отнощение оптических плотностей при 430 и 593 нм линейно зависит от концентрации кислоты. [c.150]

    Образцы облучают светом ртутной лампы ПРК-7 через хлор-бромный фильтр, обеспечивающий пропускание в области длин волн 240 Х 270 нм. Растворы бензилацетата (концентрация около 4-10 . моль/л) в 207о-ном водном ацетонитриле облучают в течение 1, 2, 3, 4, 5, 6 мин, затем в кювету добавляют постоянное во всех опытах количество 0,05 мл индикатора (0,1%-ный раствор в 20%-ном спирте) и записывают спектр поглощения индикатора. Для определения количества выделивщейся кислоты в области концентраций уксусной кислоты от Ю" до 10 моль/л строят калибровочный график. Квантовый выход реакции вычисляют по формуле [c.150]


    Химические сдвиги однотипных групп в различных соединениях не одинаковы (например, группы СНз в метиловом спирте, хлористом метиле и уксусной кислоте), поэтому значения б варьируются в определенном интервале. Это затрудняет их строгое отнесение. При отнесении сигналов в спектре ПМР к той или иной группе следует учитывать интенсивность сигнала, которая пропорциональна числу магнитноэквивалентных протонов. Так, например, соотношение интенсивностей сигналов протонов в спектре этилового спирта равно 3 2 1, что позволяет однозначно отнести их к соответствующим группировкам. Интенсивность сигнала на диаграммной ленте можно определить по площади соответствующего сигнала. [c.286]

    Как следует из теоретических и экспериментальных исследований автора по влиянию растворителей на силу кислот и из теоретических работ Соколова, вторая стадия процесса возможна только в достаточно полярной среде благодаря сольватации ионов и не возможна в вакууме, где более вероятной является диссоциация продукта присоединения не на ионы, а на молекулы. Систематические исследования взаимодействия кислот с основаниями в инертных растворителях выполнены Барроу с сотрудниками. На основании изучения инфракрасных спектров они показали, что уксусная кислота и ее галоидзамещенныс образуют с алифатическими аминами и пиридином два ряда продуктов присоединения неионизированные продукты присоединения, образованные за- счет водородной связи между кислотой и основанием, и ионизированные продукты присоединения, в которых водород уже передан основанию и образовал ионы. Последние вследствие низкой диэлектрической проницаемости растворителя не существуют самостоятельно, а включены в ионные нары. Мея ду катионом, полученным в результате передачи протона основанию, и анионом также,возникает водородная связь [c.293]

    Эти же продукты могут образоваться и путем прямого присоединения основания к молекулам растворителя. На образование продуктов присоединения неионного характера указывает исследование спектров комбинационного рассеяния растворов анилина и о-нитроанилина в муравьиной и уксусной кислотах. Исследования показали, что в этих растворителях почти не про-ярляются изменения в частотах, которые происходят при превращении основания в ионную форму. [c.355]

    При реакции метилового эфира диазо-уксусной кислоты с нафталином получен эфир состава С13Н12О2, из которого затем получена кислота. Установите строение и геометрическую конфигурацию кислоты по спектру ПМР (рис. 4.68). [c.115]

    Формилтиофен нагревают с уксусным альдегидом в растворе этанола в присутствии едкого натра. После подкисления разбавленной уксусной кислотой получено вещество, в ИК-спектре которого наблюдается интенсивная полоса в области 1680 см . После реакции этого вещества со спиртовым раствором бор-гидрида натрия (NaBH4) получен продукт, в ИК-спектре которого этой полосы нет, но наблюдается полоса в области 3430 см . Каково строение этих соединений и к каким группам можно отнести указанные выше полосы поглощения  [c.301]

    Исходя из предыдущего примера, можно ожидать, что в спектре смеси будет три сигнала, отвечающих протонам СООН-группы, воды и СНз-группы. Фактически в наблюдаемом спектре имеется только два пика. Положение пика СНд-группы не изменилось, но вместо сигнала протонов воды и карбоксильной группы наблюдается один пик в промежутке между ними — пик, отвечающий смеси. Почему для смеси наблюдается меньше линий, чем для суммы компонентов Почему в одних случаях смесь дает уменьшение числа пиков, а в других — нет Причина состоит в том, что в случае уксусной кислоты происходит реакция, которую мы обычно не замечаем, и не пишем ее уравнение. Она заключается в переходе протона воды в состав карбоксильной группы и, наоборот, легко диссоциирующий протон уксусной кислоты переходит в молекулу воды. Происходит так называемый протонный обмен. Протонный обмен является примером простейшей химической реакции. Его можно заметить и предсказать во всех деталях количественно с помощью ПМР-спектроскопии. По электронным и колебательным спектрам, т. е. в ультрафиолетовой и инфракрасной областях, это сделать не удается. Земетим, что спектр ПМР смеси уксусной кислоты и воды не является простой суммой ПМР спектров компонентов. [c.116]

    Иначе обстоит дело, когда требуется выяснить строение быстро разрушающихся ассоциатов и комплексов с участием молекул компонента, концентрация которого в растворе велика. В пределе это может быть однокомпонентная жидкость. В таких случаях картина ассоциации и комплексообразования обычно усложняется. Анализ ее лучше выполнять несколькими независимыми методами, дополняющими и контролирующими друг друга. Когда среднее время жизни ассоциатов или комплексов в концентрированных растворах меньше 10" — 10 с, применение ИК-спектроскопии или ЯМР обычно указывает лишь на существование явлений ассоциации и комплексообразования. Обнаруживаются изменения химических сдвигов, смещения в ИК-спектре характеристических полос поглощения, аномальное изменение их интенсивности, появление новых полос, и факты порой дают косвенные основания для гипотез о структуре жидкой фазы. Но теории, однозначно связывающей инфракрасные спектры или спектры ЯМР со строением жидкостей, нет, поэтому гипотезы, основанные на данных об этих спектрах для концентрированных растворов нуждаются в проверке. Например, ИК-спектры жидкой уксусной кислоты исследуются около 40 лет. Спектры показывают, что в жидкой уксусной кислоте имеются водородные связи С—Н...0 но они не дают сведений о строении ассоциатов (СНзСООН), и их концентрациях. Одни из авторов утверждают, что уксусная кислота состоит из кольцевых димеров, другие находят цепочечные образования, третьи отмечают, что спектр связей О—Н...0 цепочечных и кольцевых ассоциатов одинаков и поэтому с помощью ИК-спектров эти структуры различать невозможно. Другой пример — жидкий диметилформамид. Спектры ЯМР дают основание считать, что в жидком диметилформамиде и его растворах присутствуют ассоциаты (СНз)2КСНО. Было высказано предположение, что молекулы диметилформамида в жидкой фазе образуют кольцевые димеры. Но, как вскоре выяснилось, наблюдавшиеся особенности спектров ЯМР главным образом обусловлены не ассоциацией, а влиянием реактивного поля. Оказалось, что ассоциаты (СНдМСНО) имеют в основном цепочечную структуру. [c.108]

    Теперь можно понять причину различия в спектрах ПМР уксусного альдегида и уксусной кислоты (с. 75). Спектр первого из этих соединений содержит расщепленные сигналы, тогда как второе соединение дает два узких синглета. В молекуле уксусного альдегида протоны метильной группы и альдегидный протон разделены тремя простыми связями, поэтому спин-спиновое взаимодействие между ними возможно и действительно наблюдается (КССВ равна 2,84 Гц). В молекуле уксусной кислоты протоны метильной группы и протон карбоксильной группы разделены четырьмя простыми связями — спин-спиновое взаимодействие не происходит Константы спин-спинового взаимодействия протонов редко превышают 20 Гц. Важно знать интервал наблюдаемых значений КССВ и их типичные значения (см. табл. И приложения). Константа J может иметь знак + или — , что следует из анализа многопротонных систем. В простейших случаях знак константы не отражается на спектре. [c.131]

    С уменьшением общей концентрации С (Н—ОН) уменьшается концентрация ассоциированных частиц. Основываясь иа этом, можно различить межмоле-кулярные и внутримолекулярные водородные связи, поскольку межмолекулярная водородная связь исчезает при разбавлении раствора. В этом случае наряду с полосами поглощения ассоциатов в спектре будут наблюдаться полосы свободных ОН-групп (рис. 5.13). Кроме того, положение равновесия можно изменить действием растворителя. Из рис. 5.13, а, б видно, что в среде четыреххлористого углерода ассоциация уксусной кдслоты сильнее, чем в бензоле. Это можно объяснить стабилизирующим эффектом л-элек-тронной системы бензола на ОН-группы уксусной кислоты. Благодаря этому взаимодействию равновесие сдвигается в сторону мономерной формы уксусной кислоты. [c.226]

    Моноалкиламиды уксусной кислоты с любыми алкильными группами существуют в Z-форме, т. е. с трансоидным расположением карбонильного кислорода и водорода при азоте. Барьер вращения вокруг связи С—N для ацетамида составляет 71 кДж/моль, для моноалкиламидов уксусной кислоты — примерно 84 кДж/моль. При изучении ИК-спектров моноамидов гомологов уксусной кислоты был сделан вывод, что в цисоидном положении друг относительно друга могут находиться группы, не большие, чем этильная и изопропильная. [c.587]

    На рис. 37—39 приведены ИК-спектры этилового спирта, уксусного альдегида и уксусной кислоты. Определите, какой спектр соответствует каяедому соединению. [c.90]

    В этом случае протон может находиться в двух различных состояниях, которые должны отличаться своими физическими характеристиками, в частности положением, а возможно и формой сигнала ЯМР. Если переход протона осуществляется достаточно медленно (этого можно добиться снижением температуры), то спектр ЯМР соответствующего раствора будет содержать два различных сигнала с химическими сдвигами, соответствующими подвижному протону в НА и Б ВН+. Наоборот, при достаточно высокой температуре, когда время жизни протона в одном определенном состоянии очень мало, будет наблюдаться один узкий сигнал с промежуточным значением химического сдвига. В промежуточном диапазоне температур будет наблюдаться плавный переход от одного предельного случая к другому. Характер этих изменений проиллюстрирован на рис. 19 на примере сигнала протона ОН-группы, мигрирующего между енольной формой ацетила-нетона и уксусной кислотой  [c.66]

    Раствор 1-нафтилметилацетата (3-10 моль/л) в 20%-ном водном ацетонитриле облучают светом ртутной лампы ДРШ-1000 через светофильтр для выделения линий ртутного спектра Я = 313 нм в течение 1—6 мин. Определение количества уксусной кислоты, образовавшейся прн фотогидролизе, и квантового выхода реакции проводят аналогично описанному выше для реакции фотогидролиза бензилацетата. [c.271]

    Вейганд (1961) разработал удобный метод химического превращения а-аминокислот в соответствующие а-кетокислоты. При взаимодействии аланина с ангидридом трифторуксусной кислоты при 140°С образуется азлактон 2-трифторметилоксазолнн-2-он-5, имеющий, по данным спектра ЯМР, структуру I. Катализирземая кислотой реакция соединения I, вероятно, реагирующего в менее стабильной форме II с этилмеркаптаном, приводит к расщеплению цикла с образованием продуктов III и IV. Гидролизом диэтилтиокеталя III водной уксусной кислотой получают а-кетокислоту V выход достигает 40—50%  [c.731]

    В связи с представлениями о роли нитрат-иона в реакции нитрования следует отметить также работу Гальбана и Эйзен-бранда [28], исследовавших спектры поглощения нитратов и растворов азотной кислоты различных концентраций в воде и других растворителях (серной, хлорной, фосфорной, уксусной кислотах). [c.148]

    Изучение спектров растворов HNOs в эфире и уксусной кислоте привело авторов к выводу, что в зтих растворах азотная шслота состоит главным образом (на 60%) из оптически одно-)0дных ассоциированных ионов (HsO NOs ) или комплексных юнов (HaNOs ) остальная часть азотной кислоты находится [c.149]

    При гидролизе цианокобаламина 30%-ной щелочью при 150° выделена кристаллическая оптическая активная кобальтосодержащая гексакарбоно-вая кислота (VIII), спектр поглощения которой в ультрафиолете характеризуется теми же максимумами, что и для цианокобаламина, кроме отсутствия максимума при 278 ммк, характерного для диметилбензимидазола. Рентгеноструктурный анализ этой кислоты показал, что характерной особенностью ее является кольцевая система вокруг атома кобальта, состоящая из частично гидрированных колец, соединенных в кольцо углеродными атомами. Система эта имеет сходство с порфирином, однако в ней отсутствует один мезо-углеродный атом и поэтому два гетероцикла соединены непосредственно а-, а-связью. Боковые цепи, содержащие четыре остатка уксусной кислоты и два остатка пропионовой, расположены в р-положениях пятичленных гетероциклов. [c.683]


Смотреть страницы где упоминается термин Уксусная кислота спектр ЯМР: [c.515]    [c.161]    [c.300]    [c.301]    [c.149]    [c.190]    [c.226]    [c.38]    [c.483]    [c.271]    [c.201]    [c.233]    [c.134]    [c.751]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.149 ]




ПОИСК







© 2024 chem21.info Реклама на сайте