Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография на бумаге величины

    Распределительная хроматография на бумаге. Теория колоночной хроматографии была перенесена и в бумажную распределительную хроматографию. Бумага удерживает в порах воду (22%)—неподвижный растворитель, сорбируя ее из воздуха. Нанесенные на бумагу хроматографируемые вещества переходят в подвижную фазу и, перемещаясь с различными скоростями по капиллярам бумаги, разделяются. Однако определить значение Кр так, как это определялось в колоночном варианте, здесь невозможно, поэтому для количественной оценки способности разделения веществ на бумаге введен коэффициент представляющий собой отношение величины смещения зоны вещества (х) к смещению фронта растворителя (х ) (рис. 22), т. е. [c.79]


    Мерой эффективности разделения на бумаге ипи в тонком слое, как и в колоночной хроматографии, является величина Я  [c.333]

    Для непосредственного сравнения различие между й/набл и истинным значением Ду не, играет роли. Если необходимо, однако, установить зависимость между хроматографическим поведением и химическим строением (см. разд. II), то наблюдаемые величины Ду не являются надежной мерой коэффициента распределения.йГ и отношения фаз д и, следовательно, в формулу (16) их следует подставлять с осторожностью (см. ниже). Поэтому удивительно, что наблюдаемые при хроматографии на бумаге величины [c.112]

    В приложении к хроматографии на бумаге величину Ig связывают с величиной Rf или величиной 7 м, так как известно [1], что [c.215]

    Новая константа пропорциональна свободной энергии движения молекул в процессе их перехода из одной фазы в другую. Константа Я характеризует термодинамические свойства молекул данного индивидуального вещества, выделенного путем распределительной хроматографии. Эта величина аддитивная и складывается из констант, характеризующих растворитель (каждый атом углерода, каждое звено цепи, первичные, вторичные, третичные гидроксилы, аминогруппы, кетогруппы, карбоксильные группы и т. д.). Новая константа позволяет предвидеть значения Я для заданного вещества и определять структуру его молекулы. Константа постоянна для выбранного сорта бумаги и растворителя. Для надежной идентификации вещества константу рекомендуют определять на одной и той же бумаге для нескольких растворителей. [c.628]

    В бумажной хроматографии найти концентрацию вещества в подвижной и неподвижной фазах довольно сложно. Поэтому охарактеризовать поведение вещества на бумаге величиной [c.80]

    Величину Л х применяют главным образом в проточной хроматографии, где растворитель стекает с края бумаги и расстояние до фронта растворителя измерить невозможно. Стандартное вещество не должно перемещаться слишком быстро, чтобы оно не стекало с бумаги. Фронт [c.353]

    Чем больше различие в величинах Rj компонентов анализируемой смеси, тем полнее будет их разделение. Величины коэффициентов Rf не должны быть очень малыми, так как в этом случае вещества разделяются медленно, но и не должны быть слишком большими, так как при больших скоростях вещества не успевают полностью разделиться за время их продвижения по бумаге. Опыт показывает, что если для двух веществ S.Rj 0,05, то методом хроматографии на бумаге их можно разделить достаточно полно. [c.115]


    Количественный анализ методом осадочной хроматографии на бумаге менее удобен, чем в колонке, поскольку трудно достаточно точно измерить величину пятна или радиальной зоны малорастворимого соединения. Кроме того, на бумаге пятна (зоны) осадков часто имеют нечеткие границы. [c.238]

    Хроматография на бумаге не требует дорогостоящего оборудования, чрезвычайно проста в исполнении. В этом методе сочетается разделение с одновременным обнаружением или идентификацией веществ. Бумага удерживает в порах воду — неподвижный растворитель. Нанесенные на хроматографирующую бумагу вещества переходят в подвижную фазу и, перемещаясь с различными скоростями по капиллярам бумаги, разделяются. Способность веществ к разделению оценивается коэффициентом Rj, представляющим собой отношение величины смещения зоны вещества h к смещению фронта растворителя Н  [c.112]

    Часто применяют нисходящую бумажную хроматографию (рис. 58), при которой лист хроматографической бумаги свисает из укрепленной в верху сосуда специальной лодочки со смесью растворителей. Ток этой смеси перемещает разделяемые вещества, нанесенные у верхнего края бумаги, на разное расстояние. Отношение скорости движения растворителя к скорости движения какого-либо вещества называется коэффициентом распределения (Ry) и в стандартных условиях является величиной постоянной. [c.146]

    Полученные гидролизаты анализируют различными методами гель-хроматографией, ионообменной хроматографией, электрофорезом и хроматографией на бумаге и в тонком слое, электрофорезом в полиакриламидном геле, методом пептидных карт на бумаге или в тонком слое (в одном направлении пептиды подвергаются электрофорезу, в другом — хроматографии) и др. При этом пептиды, содержащие остат ки аргинина, триптофана и гистидина, могут быть открыты с помощью специфических цветных реакций (с. 129). Выбор метода диктуется величиной (молекулярной массой) и характером пептидов гидролизата. [c.139]

Рис. 409. Расчет величин R к Rf веществ. а — для хроматографии иа колонке 6 — для хроматографии на бумаге. Рис. 409. <a href="/info/172420">Расчет величин</a> R к Rf веществ. а — для хроматографии иа колонке 6 — для хроматографии на бумаге.
    Одним из решающих факторов, которые определяют поведение веществ при распределительной хроматографии на колонке или на бумаге, является их коэффициент распределения в данной системе фаз. Согласно закону Нернста, для определенного вещества и определенной системы фаз коэффициент распределения есть величина постоянная, не зависящая от концентрации вещества  [c.445]

    В случае хроматографии на бумаге зависимость между коэффициентом распределения и величиной Rf (см. стр. 445) выражается уравнением  [c.447]

    Методом двумерной хроматографии на бумаге отделяли натрий от щелочных и щелочноземельных элементов [482]. В качестве первого растворителя использовали смесь (87 13) абсолютного этанола и воды, в качестве второго — фенол, насыщенный водой. Разделяемые ионы имеют следующие величины 7 / (при 19° С) 0,17 Ка 0,14 К 0,19 ВЬ 0,26 Сб 0,40 КЩ 0,25 Mg 0,09 Са 0,08 8г 0,80 Ва 0,07. [c.49]

    Для отделения таллия методом хроматографии на бумаге в качестве растворителя рекомендуется смесь 70 объемов метилового спирта, 10 объемов 25%-ной серной кислоты и 40 объемов воды [409]. При этом величины Rf имеют следующие значения  [c.75]

    Так как в случае бумажной хроматографии величину Rf, измерить не представляется возможным, то для характеристики поведения зон на бумаге вводят величину [c.253]

    Изучено [1155[ влияние концентрации этанола и ацетона в смесях с 2 М H l на величину 7 /au при хроматографии на бумагах ватман № 1, ватман Р-20, ватман ДЕ-20, ватман АЕ-30. При увеличении концентрации ацетона или этанола величина Jif [c.97]

    Чистоту реагентов контролируют по физическим константам (температура плавления, температура кипения, плотность, величина молярного коэффициента погашения и др.). Иногда прибегают к элементному анализу. Для доказательства индивидуальности вещества эффективны различные виды хроматографии на бумаге или в тонком слое сорбента .  [c.5]

    Г0 реак- спределительнои хроматографии. Rm— величина аддитивная, складывается нз констант, характеризующих определяемое вещество (каждый атом углерода, каждое звено цепи, гидроксилы первичного, вторичного, третичного спиртов, аминогруппы, кетогруппы, карбоксильные группы) и растворитель. Константа Rn позволяет предвидеть значения Rf для заданного вещества и определять структуру его молекул. Она постоянна для данного сорта бумаги и данного растворителя. Для надежной идентификации вещества константу R рекомендуют определять на одной и той же бумаге с несколькими разными растворителями. [c.524]


    Теория. Излагаемый ниже вывод основывается на первоначальной работе Мартина и Синджа . Однако вместо величины Р, предложенной Мартином и Синджем, будет использована величина введенная позже Консденом, Гордоном и Мартином для хроматографии на бумаге. Величина Рр по определению представляет собой отношение скорости переме- [c.534]

    Теория, разработанная для колоночной распределительной хроматографии [117], может полностью быть применена к хроматографии на бумаге. В конечном итоге продвижение зоны каждого вещества при их разделении методом колоночной, бумажной и тонкослойной [118 раслределительной хроматографии определяется индивидуальными значениями относительных подвижностей — величинами Rf (формула (111.8) на стр. 168) или R (формула (III.10) на стр. 169). [c.174]

    В силу капиллярности органический растворитель будет передвигаться по листу хроматографической бумаги. Нанесенное на бумагу вещество движется с током растворителя. Степень сорбции исследуемого вещества--на гидратированных волокнах бумаги (воздушно-сухие листы фильтровальной бумаги в камере, насыщенной парами водонасыщенного органического растворителя, содержат до 20% воды) определяет скорость его передвижения. Вещества, хуже сорбирующиеся на гидратированных волокнах бумаги, будут передвигаться быстрее. После прохождения фронтом растворителя определенного расстояния бумагу высушивают и обрабатывают тем или иным проявителем. Параллельно с опытным раствором на тот же лист бумаги наносят стандартный раствор исследуемого вещества (свидетель), который будет указывать местоположение определяемого вещества. Для идентификации вещества можно также пользоваться величиной Rf, которая является отношением расстояния, пройденного данным веществом, к расстоянию, пройденному фронтом растворителя. Величина Rf зависит от растворителя и качества бумаги. Различают восходящую (растворитель поднимается по бумаге вверх) и нисходящую (растворитель движется по бумаге вниз) хроматографию. [c.46]

    Для определения общего содержания и идентификации отдельных веществ были использованы следующие методы для флавоноидов — метод Лоренца-Арнольди, усовершенствованный Вадовой [7] для идентификации применен метод хроматографии на бумаге в 60%-ной уксусной кислоте с использованием проявителя 1 %-ного спиртового раствора хлористого алюминия. Антоциановые вещества количественно определены по калибровочной кривой цианидина [43] и идентифицированы хроматографией на бумаге (одно пятно как цианидин Х ,ах =555 нм второе пятно не идентифицировано). Каротиноиды идентифицированы при помощи тонкослойной хроматографии на окиси алюминия [74] в виде -каротина, -каротин — моноэпоксида и криптоксантина по величинам и максимумам поглощения (450 нм в петролейном эфире и 460 нм в хлороформе). [c.393]

    Регистрирующее устройство. Обычно используют потенциометрические самописцы с диаграммной бумагой. В более совершенных моделях жидкостных хроматографов применяются автоматические устройства, преобразующие аналоговый сигнал от хроматографа в цифровые величины. Электронные цифровые интеграторы интегрируют площадь пика и печатают площадь пика вместе с временами удерживания. [c.36]

    Принцип распределительной хроматографии основан на различии в коэффициентах распределения аминокислот между водой и органическим растворителем. Особенность метода распределительной хроматографии на бумаге по сравнению с обычной экстракцией ам.инокислот из водного раствора органическим растворителем заключается в том, что одну из фаз, чаще всего водную, помещают на какой-нибудь инертный твердый носитель, а органический растворитель — подвижная фаза,— проходя через первую, извлекает и распределяет аминокислоты на бумаге в соответствии с их коэффициентами распределения. Положение аминокислот на бумаге определяют по отношению скорости движения аминокислоты скорости движения фронта растворителя и обозначают Rf. Величина за висит в первую очередь от строения аминокислоты, затем от системы растворителей, pH среды и сорта бумаги, Чем полярнее аминокислота, тем меньше она растворяется в органических растворителях и тем меньше ее R . Увеличение длины углеродной цепи повышает . Введение в молекулу полярных групп, например, гидроксильной, аминной или карбоксильной понижает Rf Так, Rf фенилаланина в системе фенол/вода = 0,85, а тирозиит 0,51. Другие примеры изменения в зависимости от строения аминокислоты представлены на рис. 3 и 4. Подбирая соответствующие смеси растворителей, можно провести достаточно тонкое разделение аминокислот. Наиболее часто пользуются для такого разделения системами вода — фенол — аммиа вода — бутапол — уксусная кислота бутанол — аммиак — коллидин и т. д. Разделение можно проводить на одномерной или двумерной хроматограммах. Можно пользоваться также различными типами распределительной хроматографии на бумаге — нисходящей, восходящей и радиальной. Величины Rt для каждой из систем растворителей оказываются постоянными при соблюдении [c.479]

    В работе Гросса [5] описано получение S-этил-1-С -/-гомоци-стеина из йодистого этила-1- и 8-бензил-/-гомоцистеина. Исходное вещество (1,14 г), полученное из метионина через 8-бен-зил- /-гомоцистеин [6] и Ы-ацетил-5-бензил- /-гомоцистеин [7], восстанавливают металлическим натрием в жидком аммиаке, и образовавшийся меркаптид обрабатывают 0,63 г йодистого этила-ЬС Прибор для проведения реакции представляет собой модификацию прибора, о котором идет речь в примечании 2. Вещество, оставшееся после испарения аммиака, растворяют в воде, и полученный раствор подкисляют соляной кислотой до pH 1—2, затем этот раствор пропускают через колонку [8] (высота 2,5 м, диаметр 22 см), наполненную ионообменной смолой дауэкс-50 (степень сшивания 8%) с величиной зерен 200—400 меш. Фракции, содержащие продукт реакции, полученные при элюировании 2,5 н, соляной кислотой, объединяют и испаряют при пониженном давлении. Остаток растворяют в воде и с помощью раствора едкого натра создают среду с pH 6,2. Для очистки вещество сублимируют при температуре 180—200° и давлении 1 мм рт. ст. Выход 0,400 г (60%),[а]д + 23°, концентрация 1% в 2 н. растворе соляной кислоты. Методом бумажной хроматографии в системе бутиловый спирт — вода— уксусная кислота (10 5 2) или в системе третичный амиловый спирт — вода — пиридин (7 6 8) при температуре 22—25° на бумаге ватман № 4 показано, что вещество состоит из свободной аминокислоты и радиохимических примесей RjSi,61 и 0,61 соответственно. [c.218]

    Хаслам и Удрис [15] для анализа продуктов гидролиза предложили метод кольцевой бумажной хроматографии с использованием реагентов, подобных описанным выше. Эта модификация хроматографической методики позволяет получать на бумаге кольца с определенными величинами Rf, характеризующие составные части продуктов гидролиза и, следовательно, полиамида в образце. [c.247]

    Для количественных определений методом газожидкостной хроматографии в фармакопее обычно используют внутренний стандарт, так как результаты сравнения одной хроматограммы с другой, полученной после второго введения в колонку, могут быть ошибочными. Прибавление подходящего внутреннего стандарта к испытуемому раствору и к стандартному раствору исключает эту ошибку, так как на хроматограммах сравнивается отношение площади или высоты пика (см. ниже) определяемого вещества к аналогичным величинам, полученным с внутренним стандартом. При других определениях, в частности когда оценивается содержание шримеси, удобнее использовать процесс нормализации. В этом случае площадь пика, относимая за счет предполагаемой примеси, выражается как процент от общей площади всех пиков, полученных с испытуемым веществом и его ожидаемыми примесями. Поскольку при этом величина пика основного компонента обычно на два порядка выше, чем величина пика наименьшей примеси, для таких определений необходимо использовать надежный автоматический интегратор и усилитель широкого диапазона, который обеспечивает линейное усиление сигнала и от большего и от меньшего компонентов. Площади пиков можно также измерять планиметром, графически или по массе бумаги, вырезанной по размерам пиков из хроматограммы. Прн определенных обстоятельствах более целесообразно измерять высоту пика, а не его площадь, хотя последняя величина более точна для количественных определений. Ширина пика определяется как отрезок нулевой линии, заключенный между точками пересечения линий, касательных к образующим шика. [c.108]

    При проверке чистоты вещества помимо элементного анализа пользуются определением физических постоянных, если соответствующие величины, а возможно, и их зависимость от температуры точно известны. Наибольшее распространение в лабораторной практике имеют определения температуры плавления, плотности, показателя преломления и давления пара. Если эти методы неприменимы, то можно в качестве испытания на однородность подвергнуть вещество операциям разделения. Для этой цели применяют прежде всего не требующие значительных затрат времени методы газовую, тонкослойную хроматографию нлн хроматографию на бумаге. Высокой чувствительностью по отношению к примесям обладают спектроскопические методы. При этом для характеристики жидкостей (например, растворителей, см. разд. 6) и растворенных веществ наиболее важны электронные спектры. Полезно иметь также инфракрасный и масс-спектр, которые в соответствующем аппаратурном оформлении могут быть сняты для образцов в твердом, жидком н газообразном состоянии. Оба метода дают возможность проводить качественное и полуколнчественное определение примесей, что очень облегчает принятие решения о целесообразности дальнейшей очистки. Например, содержание воды в твердом препарате легко определяется по широким полосам поглощения при 1630 н 3400 см в ИК-спектре. Разумеется, в этом случае следует иметь в виду, что галогениды щелочных металлов, используемые при приготовлении таблеток для ИК-спектроскопии, гигроскопичны. Их применение для съемки гигроскопичных объектов или для определения воды возможно только после нх тщательной осушки и лишь прн полном отсутствии воздуха (отмеривание, растирание с веществом, наполнение пресс-формы проводятся в сухой камере). Другой возможностью является съемка суспензии вещества в сухом нуйоле или в другой подходящей жидкости. Подобные жидкости должны обладать достаточно высокой вязкостью и по возможности малым собственным поглощением в соответствующей области спектра. В качестве материала для изготовления окон кювет для съемки ИК-спектров газов и жидкостей применяют вещества, перечисленные в табл. 26. Если нет необходимости вести съемку в области ниже 600 см , то следует пользоваться сравнительно дешевыми монокристаллами хлорида катрня. Конечно, вещество не должно реагировать с материалом окон (при необходимости предваритель- [c.142]

    Бланд [10] использовал для разделения лигнина двухмерную хроматографию на простой бумаге, а также бумаге, пропитанной тетраборатом натрия (ср. Бланд [9]) и смеси изобутанол—бензол — вода (1 9 10), метанол—вода (1 1). Он разделил лигнин, выделенный из Eu alyptus regnans, метанолом при 150° на трп лигнинных вещества с величиной R/, равной 0,00—0,99 (изобутанол — бензол — вода) и 0,7 (метанол — вода). Все было сделано на бумаге, пропитанной боратом, восходящим методом. [c.524]

    Широкое распространение получила хроматография на бумаге, обработанной различными реагентами. Исследована [1370] возможность хроматографии на бумаге, пропитанной первичными, вторичными, третичными и четвертичными аминами. При кислотности элюента 0—10 М НС1 для золота величина Rf = О на бумаге, пропитанной хлоридом метилтрикаприламмония или ди-лауриламином, и постепенно возрастает от О до 0,5 на бумаге, пропитанной гексадециламином, т. е. экстракция увеличивается в ряду аминов первичные вторичные < третичные < четвертичные. Аналогичные закономерности наблюдаются в случае среды [c.101]

    С этой целью в случае колоночной хроматографии вытекающую из колонки жидкость разделяют на малые фракции и определяют концентрацию содержащегося в них вещества. Детектирование можно осуществлять с помощью цветных реакций, проточных рефрактометров, фотометров, поляриметров и т.д. Для проявления бумажных или тонкослойных хроматограмм бумагу или пластинку опрыскивают какими-либо проявляющими реагентами, образующими с веществами окрашенные соединения. В ряде случаев пятна веществ на хроматограмме можно увидеть в УФ-свете. Хроматографической характеристикой вещества служит величина постоянная для каждого вещества в определенной системе растворителей и представляющая собой отношение длины пробега пятна веи ества на хроматограмме к длине пробега фронта растворителя. Вещество можно выделить из хроматограммы в индивидуальном виде, экстрагируя из пятна. В газовой хроматографии для обнаружения выходящего из колонки вещества применяются иламенно-ионизационные детекторы или детекторы теплопроводности (катаро-метры). Хроматографической характеристикой вещества в этом методе является время задержки его на неподвижной фазе (время удерживания), а также задерживаемый на ней объем, отнесенный к объему подвижной фазы (удерживаемый объем), и иногда — путь, пройденный на неподвижной фазе, также отнесенный к пути, пройденному подвижной фазой (значение / /). Выделение получаемых в процессе газовой хроматографии индивидуальных компонентов возможно вымораживанием их из соответствующих газообразных фракций. [c.30]

    Различные величины Rf ионов ртути и других элементов делают возможным разделение их при помощи распределительной хроматографии на бумаге. Для разделения применяют самые раз-нообраэные растворители, но чаще всего растворители, содержащие к-бутанол, содержащий НС1 различной концентрации [99, 538, 903, 904[. В табл. 14 даны примеры разделений смесей, содержащих ртуть, методом распределительной хроматографии на бумаге. [c.63]


Смотреть страницы где упоминается термин Хроматография на бумаге величины: [c.326]    [c.218]    [c.40]    [c.83]    [c.114]    [c.173]    [c.42]    [c.75]    [c.129]    [c.147]    [c.239]    [c.244]    [c.108]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.895 , c.975 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.895 , c.975 ]




ПОИСК





Смотрите так же термины и статьи:

Бумага хроматограф

Хроматография на бумаге

Хроматография хроматография на бумаге



© 2025 chem21.info Реклама на сайте