Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильные ароматические перегруппировки

    К ароматическим электрофильным (катионотропным) перегруппировкам относятся перегруппировки, в ходе которых мигрирующая группа переходит от заместителя в ароматическое ядро как электрофильная частица без электронов, которыми она была связана в боковой цепи. [c.400]

    Перегруппировки карбониевых ионов, протекающие путем 1,2-арильных сдвигов, широко распространены. Это и не удивительно, так как 1,2-сдвиг арила представляет собой не что иное, как реакцию внутримолекулярного электрофильного ароматического замещения, только в отличие от наиболее распространенных реакций замещения водорода в данном случае замещаемым атомом является атом углерода. [c.189]


    При этом в качестве электрофильной частицы генерируется не катион, а нейтральный дихлоркарбен (79), в котором атом углерода имеет незаполненный внешний электронный уровень. Далее дихлоркарбен взаимодействует как электрофил с фенок-сид-ионом. Образовавшийся анион (79а) претерпевает перегруппировку, так как атом углерода, несущий полный отрицательный заряд, обладает сильноосновными свойствами, и отщепление протона от кольца сопровождается выигрышем энергии вследствие восстановления ароматической структуры. [c.395]

    СНз-С=0 в качестве кинетически независимой частицы, которая далее атакует ароматическое кольцо фенола как электрофильный агент. Такие перегруппировки назьшают межмолекулярными. [c.79]

    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]


    Эта реакция родственна, с одной стороны, другим аллильным перегруппировкам, с другой стороны — обычному электрофильному замещению под влиянием о- и -ориентантов в ароматическом ядре. Все это — реакции с перенесением реакционного центра по системе сопряженных связей (я-л и я-а). [c.364]

    К электрофильным (или катионотропным) перегруппировкам относятся такие перегруппировки, в ходе которых происходит миграция группы, имеющей недостаток электронов, к атому, несущему отрицательный заряд или неподеленную электронную пару. Как и прежде (стр. 368), к алифатическим системам будут отнесены насыщенные, а также непредельные и ароматические молекулы, в ходе перегруппировок которых кратные связи не играют определяющей роли. [c.393]

    В этом разделе будут рассмотрены ароматические электрофильные и нуклеофильные интермолекулярные перегруппировки, а также ароматические интрамолекулярные перегруппировки. [c.400]

    ЭЛЕКТРОФИЛЬНЫЕ ПЕРЕГРУППИРОВКИ В АРОМАТИЧЕСКОМ РЯДУ [c.400]

    Карбониевые ионы, положительные и отрицательные, постулируются в качестве интермедиатов для самых разнообразных химических реакций. Исследование структуры и относительной стабильности карбониевых ионов — прекрасный пример применения метода поверхностей потенциальной энергии к конкретным химическим проблемам. Большинство подобных систем весьма трудно поддается изучению экспериментальными методами и квантовохимический расчет — зачастую единственный способ получить какую-либо информацию об этих нестабильных образованиях. Из этого параграфа мы исключили результаты, которые так или иначе связаны с интерпретацией реакций электрофильного или нуклеофильного замещения в ароматических соединениях, так как они будут рассмотрены в другом разделе. Соответствующие вопросы тесно связаны с проблемой сопряжения и другими аспектами взаимодействия ионного центра с остальным фрагментом, тогда как здесь будут рассмотрены вопросы структуры самого катионного (анионного) центра и перегруппировки в ионах. [c.151]

    К тому же направлению работ относятся и работы группы Йоргенсена [215] в области электрофильного ароматического замещения и других электрофильных реакций (генерация карбониевых ионов и их последующая перегруппировка, реакции отщепления, присоединение к кратным связям и взаимодействие с нуклеофильными реагентами) [254]. Несколько наборов модулей, составляющих программу САМЕО, представляют собой выдающийся пример того, как КПОС стимулирует фундаментальные исследования в органической химии [319]. [c.55]

    Перегруппировки с межмолекулярным механизмом делятся в свою очередь на перегруппировки, в которых мигрирующая группа отделяется от азота в виде остатка с недостатком электронов, т.е. электрофильного остатка электрсфилъные, или катионотропные, ароматические перегруппировки), и реакции, в которых от азота отщепляются атомные группы вместе со всеми своими электронами (нуклеофильные, или анио-нотропные, ароматические перегруппировки). Опишем некоторые наиболее важные реакции обоих классов. [c.549]

    Из трех существующих типов промежуточных частиц, образующихся в органических реакциях — карбониевых ионов, карба-нионов и свободных радикалов, именно карбониевые ионы были предметом наиболее пристального внимания и многочисленных исследований. Это и не удивительно, если вспомнить, что в свободном виде или Б составе ионных пар карбониевые ионы образуются в реакциях нуклеофильного замещения у насыщенного атома углерода, при присоединении протона или катиона к ненасыщенным системам в реакциях электрофильного присоединения н, наконец, в виде а-комплексов в реакциях электрофильного ароматического замещения. Кроме того, через стадию образования карбониевых ионов в свободном или криптоионном состоянии осуществляются многочисленные молекулярные перегруппировки. [c.5]

    Движущей силой этого процесса (диенон-фенольной перегруппировки) является, конечно, образование ароматической системы [128]. Можно отметить, что ионы 49 и 50 являются аре-нониевыми ионами (т. 2, разд. 11.1), такими же, которые образуются при электрофильной атаке фенолов [129]. Иногда в реакции фенола с электрофилом наблюдается как бы обратная перегруппировка фенол-диеноновая перегруппировка), хотя и без истинной миграции [130], например  [c.140]

    Существует ряд катализируемых кислотами (или кислотами Льюиса) реакций, в ходе которых М-замещенные ароматические амины и 0-замещенные фенолы перегруппировываются в соответствующие орто- или /гара-замещенные в ядре соединения. Из числа таки Г реакций уже обсуждались перегруппировка диазоаминосое-динений (триазенов) в аминоазосоединения (разд. Г, 8.3.3), перегруппировка фенилгидроксиламина в /г-аминофенол (разд. Г, 8.1) перегруппировка сложных эфиров фенолов по Фрису (разд. Г, 5.1.7.1). В ходе этих реакций заместитель полностью отделяется от субстрата. Отщепившийся остаток выступает в роли катиона в реакции электрофильного замещения в ароматическом ядре. Исследования показывают, что эта реакции протекают межмолеку-лярно, например  [c.283]


    Алкилирование ароматических аминов рассмотрено в книге Ола [81, галогенирование — в разделе о галогенпроизводных (гл. 7, разд. Г.З), нитрование — в разделе о нитросоединениях (гл. 20, разд. А.2), а ацилирование — в разделе о кетонах (гл. 11, разд. В.1, а также пример в.4). Некоторые типичные синтезы азотсодержащих гетероциклов, имеющих электрофильный характер, рассматриваются в разных разделах реакция Скраупа в разд. Е.З, бензидино-вая перегруппировка в разд. Ж.6 и индольный синтез Фишера в разд. Ж.7. [c.545]

    В реакциях с участием биполярных активированных комплексов распределение зарядов в последних существенно отличается от распределения зарядов в начальном состоянии. Помимо рассмотренных в разд. 5.3.1 5м1-, 8м2-, Ер и Ег-реакций изучалось влияние растворителей и на другие реакции, протекающие через биполярные активированные комплексы, в том числе реакции ароматического нуклеофильного (ЗмАг) и элект-рофильного (ЗеАг) замещения, электрофильного алифатического замещения (8е1 и 5е2), алифатического электрофильного (Ае) и нуклеофильного (Ам) присоединения, циклоприсоединения, расщепления цикла, альдольной конденсации, а также реакции перегруппировки, процессы фрагментации и изомеризации. Ниже на ряде типичных и самых наглядных примеров, заимствованных из огромного количества литературных данных, будет продемонстрирована эффективность простых правил Хьюза — Ингольда, хотя они и носят только качественный характер. [c.218]

    Аналогичные работы по исследованию другой пары поликетидных кометаболитов, (81) и (82), позволили предложить иной механизм расщепления и сужения цикла (схема 20) [53]. Вероятно, общим предщественником этих двух соединений является показанная на схеме свободная кислота, соответствующая лактону (79) детали механизмов других стадий процесса, в том числе 0-метилирования и электрофильного галогенирования, неизвестны. Подобным же образом были приведены свидетельства в пользу существования перегруппировки третьего типа от пентакетида (83) до пирона (84) промежуточные соединения в этом случае не идентифицированы [54]. В этой перегруппировке (схема 21) степень окисления продукта реакции отвечает скорее эпоксидированному полиену, чем ароматическому поликетиду [ср. аналогичный регулярный поликетид (7)], но достаточно надежно установлены только общие принципы синтеза углеродного скелета этого соединения. В любом случае, однако, данные по включению ( Сг) ацетата показывают, какой конец углеродного скелета остается интактным и какой теряет атом углерода. Ниже будут рассмотрены некоторые другие важные примеры расщепления кольца и перегруппировок более сложных поликетидов (см. разд. 29.1.3.3 и 29.1.3.5). [c.442]

    Различные перегруппировки ароматических соединении протекают через отп епление электрофильного реагента от бокопой цепи и последующее присоединение его к ядру (а)  [c.320]

    Оба объяснения в некоторой степени соответствуют обеим гипотезам, выдвинутым для объяснения стереоспецифичности электрофильного присоединения к олефинам. В данном случае речь идет только о противоположной системе, в которой мигрирующий остаток связывается нуклеофильно. В связи со сказанным выше возникает вопрос, в какой степени рассматриваемые здесь секстетные перегруппировки родственны перегруппировкам ароматических соединений (см. раздел об алкнлирова-нии по Фриделю — Крафтсу). За это говорит тот факт, что и в том, и в другом случае легко подвергаются перегруппировке +/-заместители. [c.496]

    Полученные нами данные позволяют заключить, что для аллиларилсульфидов клайзеновская перегруппировка не имеет места. Это возможно обусловлено частичной дезактивацией атомом серы, соединенным с аллиль-ным радикалом, электрофильных замещений ароматического ядра. Эта особенность аллилсульфидного радикала проявляется и при перегруппировках аллиларилсульфонов, т. е. в тех случаях, когда сера окислена. [c.166]

    Протон переходит к ароматическому кольцу и при этом получается комплекс (II). В нем протон связан со всей л-электрон-ной системой ароматического кольца ( внешний комплекс по Мулликену или я-комплекс по Броуну и Брэди, см. стр. 29). Внутримолекулярная перегруппировка состоит в переходе протона к определенному атому углерода с одновременным перемещением дейтрона на то место, которое ранее занимал протон (IV). Этот процесс требует затраты энергии активации и происходит медленно. Предполагается существование промежуточного комплекса (III), имеющего строение карбониевого иона, с атомами водорода и дейтерия, присоединенными к одному и тому же атому углерода. Допускать его существование нет необходимости для объяснения кинетики реакции, но оно, по мнению авторов, вполне вероятно, учитывая близость кислотного водородного обмена в ароматическом кольце к прочим реакциям электрофильного замещения водорода (например, галоп-дирование, нитрование), где такие промежуточные комплексы общеприняты (стр. 17). Карбониевый ион (III) имеет строение внутреннего комплекса Мулликена и а-комплекса Броуна (стр. 29). Предполагается, что последняя стадия реакции — отрыв дейтрона — происходит очень быстро. [c.88]

    Окисление ароматических иодсодержащих соединений пероксикислотами приводит последовательно к иодозосоединениям (52) и к иодоксисоединениям (53), возможно также образование диэфиров (54) схема (23) [24]. Ацетилены окисляются с расщеплением тройной углерод-углеродной связи, давая схема (24) смесь карбоновых кислот. (56) и (57) или изомеризованную кислоту (55), возможно, образующуюся в результате перегруппировки промежуточного эпоксида в кетен. Гидроксилирование ароматических соединений, активированных по отношению к электрофильной атаке, достигается действием трифторперуксусной кислоты схема (25) . Реакцию обычно проводят в кислой среде или в присутствии кислоты Льюиса, например ВРз [13], для промотирования образования промежуточных групп, активных к действию [c.587]

    Перегруппировки этого типа чаще всего проходят по электрофильному межмолекулярному механизму. Например, в случае Ы-нитрозоаминов происходит электрофильное замещение иона N0 при атоме азота на протон Н , а затем электрофильное замещение протона Н в ароматическом ядре на N0 . [c.382]


Смотреть страницы где упоминается термин Электрофильные ароматические перегруппировки: [c.79]    [c.238]    [c.10]    [c.14]    [c.756]    [c.396]    [c.190]    [c.4]    [c.91]    [c.322]    [c.426]    [c.257]    [c.489]    [c.583]    [c.658]    [c.96]    [c.295]   
Теоретические основы органической химии (1973) -- [ c.738 , c.748 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофильность



© 2024 chem21.info Реклама на сайте