Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод, определение строение атома

    Данные дифракции электронов, дифракции рентгеновских лучей и спектроскопии показывают, что, если атом углерода связан с четырьмя другими атомами, его связи направлены к углам тетраэдра. Еще в 1874 г., за много лет до того, как стало возможным прямое определение строения молекул, Вант-Гофф, будучи студентом Утрехтского университета, предположил, что атом углерода имеет тетраэдрическое строение. Его предположение было основано на данных о числе изомеров. [c.74]


    Строение молекулы бензола отвечает плоскому равностороннему шестиугольнику с параметрами d( ) = 1,40 и d( H) = 1,08 А (рис. Х-30). Помимо трех а-связей, каждый содержащийся в бензоле атом углерода способен образовывать одну ii-связь с соседним атомом углерода. Так как эти я-связи за определенными парами атомов не закреплены, участвующие в их образовании 6 электронов полностью делокализованы и могут считаться принадлежащими молекуле в целом. Такая ( ароматическая ) структура выгоднее классической — с чередующимися простыми и двойными связями между атомами углерода — по разным оценкам на величину от 5 до Рис. х-30. Схема строения молекулы 36 ккал/моль (наиболее правильным значением яв- бензола, [c.551]

    Пространственная изомерия. Этот вид изомерии обусловлен различным пространственным расположением атомов при одной и той же последовательности их связывания. В 1874 г. к теории А. М. Бутлерова было сделано существенное дополнение. Голландский ученый Вант-Гофф и независимо от него французский исследователь Ле Бель высказали предположение, что четыре валентности атома углерода определенным образом расположены в пространстве, а именно, они направлены к вершинам тетраэдра, в центре которого находится атом углерода (рис. 1.19). В этом случае углы между всеми связями равны и составляют 109,5. Так возникло представление о пространственном строении молекул, которое развилось затем в раздел химии, называемый стереохимией. [c.59]

    Метан и его галоидозамещенные имеют весьма сходное молекулярное строение. В центре молекул всех этих соединений расположен атом углерода и вокруг него расположены четыре других атома (водорода и галогенов) так, что углы между связями либо строго тетраэдрические (109°28 ), либо незначительно отличаются от тетраэдрических Длины связей С—X для метана и его галоидозамещенных имеют определенные характеристические значения. Так, длина связи С—Н имеет значения от 1,07 до 1,11 А, длина связи С— Р — от 1,32 до 1,39 А, длина связи С — С1 — от 1,75 до 1,78 А, длина связи С — Вг — от 1,91 до 1,94 А и длина связи С — J — от 2,13 до 2,16 А. [c.491]

    Фактически же анион имеет вполне определенное строение и отрицательно заряжены одновременно оба атома—углерод и кислород способность же аниона реагировать в соответствии с указанными двумя формулами—его двойственная реакционная способность—обусловливается возможностью смещения электронов под влиянием реагентов нацело к одному или другому атому [40], [c.163]

    Может ли взаимодействие между группами приводить к увеличению значений констант, характеризующих последовательные этапы присоединения лигандов С первого взгляда это кажется невозможным, поскольку означает, что истинная константа связывания для второго протона больше, чем для первого, а здравый смысл подсказывает нам, что первый протон будет соединяться с тем центром, для которого константа связывания больше, а не меньше. Посмотрим, однако, на экспериментальную кривую связывания протонов с анионом тиамина (рис. 4-4). По сравнению с аналогичной кривой для ацетат-иона она не только не растягивается, а, напротив, становится вдвое более крутой. Это явление объясняется некоторыми удивительными особенностями химического строения тиамина (витамина В ). При определенных условиях этот витамин может кристаллизоваться в виде натриевой соли желтого цвета структура соответствующего аниона показана ниже. Слабое связывание протона с одним из атомов азота [уравнение (4-31)] приводит к уменьшению электронной плотности на соседнем атоме углерода, к которому присоединяется отрицательно заряженный атом серы, замыкая кольцо неустойчивой трициклической формы тиамина.  [c.261]


    При более энергичном действии окислителей на этиленовые углеводороды цепь атомов углерода разрывается по месту двойной связи и получаются, в зависимости от строения исходного углеводорода, или органические кислоты, или кетоны. Так, например, триметилэтилен (СНз) гС = СН—СНз расщепляется с образованием ацетона и уксусной кислоты углеводород строения R—СН = СН—R дает две кислоты R—СООН и R —СООН. Ввиду этого реакции окисления очень часто применяются для определения строения ненасыщенных соединений. Окисление перманганатом в нейтральной или щелочной среде применяется как качественная реакция на,кратные связи (раствор перманганата моментально обесцвечивается с выделением бурой перекиси марганца). Этиленовые углеводороды гладко окисляются тетраацетатом свинца и осмиевым ангидридом при этом двойная связь разрывается и образуются гликоли с тем же числом атомов углерода. Окисление в жидкой фазе кислородом или воздухом, вопреки прежним представлениям, направляется не на атомы углерода, связанные двойной связью, а на атом углерода, соседний с двойной связью при этом первичными продуктами окисления оказываются непредельные перекисные соединения  [c.372]

    Определение, строение, номенклатура, изомерия. Нитросоединениями называются вещества, содержащие в молекуле нитрогруппу (—NO2), азот которой непосредственно связан с атомом углерода. В состав молекулы органического соединения могут входить одна или несколько нитрогрупп. В зависимости от строения углеводородного радикала, с которым связана нитрогруппа, различают алифатические (насыщенные и ненасыщенные), ароматические и гетероциклические нитросоединения. Нитрогруппа в молекуле нитросоединения может быть связана с первичным, вторичным или третичным атомами углерода. Строение нитрогруппы отличается рядом особенностей, влияющих на физические и химические свойства нитросоединений. Атом азота в нитрогруппе связан с одним из кислородных атомов двойной связью, осуществляемой двумя парами электронов, а с другим кислородным атомом — семиполярной связью при помощи донорно-электронной пары, предоставленной азотом и кулоновским взаимодействием положительно заряженного атома азота и отрицательно заряженного атома кислорода. Это может быть изображено формулами (I, П, П1, IV),некоторая выравненность электронной плотности может быть передана с помощью формулы V. [c.168]

    Фактически же анион имеет вполне определенное строение и отрицательно заряжены одновременно оба атома—углерод и кислород способность же аниона реагировать в соответствии с указанными двумя формулами—-двойственная реакционная способность—обусловливается возможностью смещения электронов под влиянием реагентов нацело к одному или другому атому [33]. Этот способ изображения молекул нашел очень широкое применение, особенно за рубежом. [c.150]

    Ле Бель высказали предположение, что четыре валентности атома углерода определенным образом расположены в пространстве, а именно,, они направлены к вершинам тетраэдра, в центре которого находится атом углерода (рис. 1.20). В этом случае углы между всеми связями равны и составляют 109,5°. Так возникло представление о пространственном строении молекул, которое развилось затем в раздел химии, называемый стереохимией. [c.55]

    Задача 133. Фотолиз органических нитритов, имеющих определенное строение, может привести к внутримолекулярному обмену нитрозогруппы и атома водорода, соединенного с б-атомом углерода. Эта реакция удобна для избирательного введения кислородсодержащей функции к неактивированному атому углерода. [c.244]

    Однако из сказанного не следует, что попытки разгадать природу химической связи не имели значения для развития химии. Анализ этих попыток показывает, что природа химической связи может быть понятна только в том случае, если предметом исследования станет сам атом. В самом деле, и тетраэдрическая модель атома углерода, и общая идея теории строения о направленном действии сил химического сродства, и модели Вернера, и некоторые другие соображения давали основание предполагать, что атомы обладают определенным строением, что существуют субатомные структуры [c.326]

    Нельзя отождествлять степень окисления с валентностью элемента, если даже абсолютные их значения совпадают. Валентность атома, определяемая как число химических связей, которыми данный атом соединен с другими атомами, не может иметь знака (+ или —) и равняться нулю. Поэтому особенно неудачны выражения положительная и отрицательная валентность и тем более нулевая валентность , бытующие поныне в химической литературе. Рассмотрим пример метана СНд, метилового спирта СНзОН, формальдегида НСОН, муравьиной кислоты ИСООН и диоксида углерода СОа, в которых валентность углерода равна четырем, а степени окисления его равны соответственно —4, —2, О, + 2 и -1-4. Кроме того, для установления валентности атома требуется знание химического строения соединения, а определение степени окисления производится в отрыве от строения вещества, т. е. формально. [c.72]


    В молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью, т. е. молекулы имеют точное химическое строение. Углерод в органических соединениях четырехвалентен, т. е. соединен с четырьмя другими одновалентными атомами (атомы углерода могут соединяться с атомами различных элементов и друг с другом). Исследования строения атомов и природы химической связи показали, что атом углерода, образуя органическое соединение, переходит из обычного электронного состояния в возбужденное (см. раздел 9). Четыре орбитали атома углерода, содержащие неспаренные электроны, позволяют атому образовать четыре ковалентные связи. [c.152]

    К сожалению, подавляющее число исследованных до последнего времени индивидуальных сераорганических соединений относится к группе сульфидов жирного и жирно-ароматического рядов. Сернистые соединения циклического строения и прежде всего гетероциклические с атомом серы, входящим в кольцо (тиофены, тиофаны и др.), исследованы крайне недостаточно. Общей для всех исследованных соединений относительно прочности С — З-связей является следующая закономерность прочность связи углерод — сера возрастает в ряду меркаптаны — сульфиды — тиофены. В пределах каждой из приведенных групп сераорганических соединений также наблюдается различие в прочности связи С — 8, обусловливаемое характером строения углеводородной части молекулы. Например, ароматические меркаптаны (тиофенолы) более стойки, чем алифатические. В ряду алифатических меркаптанов связь С — 8 сильно ослабляется, если атом серы связан с третичным углеродным атомом. Эта зависимость распространяется и на алифатические сульфиды. Влияние числа и природы заместителей в кольце на прочность связи в тиофеновом кольце изучено очень слабо, однако и здесь отмечается определенная зависимость между строением молекулы и прочностью связей С — 8. [c.372]

    Химическим строением Бутлеров назвал последовательность связи атомов в молекуле. Он указал, каким путем на основании изучения химических реакций данного вещества можно установить его структуру и написать структурную формулу, которая для каждого химического индивидуума является единственной адэкватной. В соответствии с этой формулой можно и синтезировать данное соединение. Свойства определенного атома в соединении прежде всего зависят от того, с каким атомом он связан. Так, свойства водорода, связанного с кислородом, иные, чем водорода, связанного с углеродом, и, зная эти свойства, можно установить, с каким атомом связан интересующий нас атом. Например, атом водорода, связанный с кислородом, как в спиртах, способен замещаться на натрий при действии металла (так же как водород в воде — неорганическом прототипе с тем же характером связи), а водород, связанный с углеродом, обычно инертен по отношению к натрию. На свойства данного атома влияют и другие его соседи, непосредственно с ним не связанные. Хотя это влияние более слабое, но оно такн е должно быть учтено при установлении химического строения. [c.17]

    Если для Ф взять форму потенциала, учитывающую атомное строение графита, а равновесное расстояние 2о оценивать на основании атом-атом-ных потенциальных функций межмолекулярного взаимодействия атомов адсорбата с атомом углерода графита, то определенное из значение 5 для сажи Р-33 практически не зависит от природы адсорбата и составляет около 11 м г [И]. Это значение совпадает со значением 8, определенным для зтой сажи методом БЭТ [12, 13], в пределах погрешности метода. [c.113]

    Промежуточное соединение в этих реакциях (минимум на энергетической кривой) представляет собой типичный а-комплекс, в котором ключевой атом углерода находится в состоянии 5р -гибридизации. В определенных условиях этот а-комплекс может быть выделен и изучен. Например, Я. Мейзенгеймер выделил и доказал строение промежуточного соединения комплекс Мейзенгеймера), [c.645]

    На образование двойной связи каждый из двух образующих эту связь атомов углерода затрачивает по две валентности. Так как атом углерода имеет тетраэдрическое строение, это означает, что два тетраэдра соединяются двумя вершинами, или, иными словами, соединяются по ребру (рис. 5). Поэтому свободное вращение тетраэдров друг относительно друга без разрыва двойной связи невозможно, и оставшиеся заместители должны занимать в пространстве вполне определенное положение относительно [c.46]

    Присоединение окиси углерода и воды к олефинам в присутствии катализаторов, особенно концентрированной серной кислоты, с образованием карбоновых кислот разветвленного строения идет с исключительно хорошими выходами при определенных условиях даже в отсутствие давления. Целесообразно работать при температуре от О до 50° н при давлении окиса углерода 50—100 ат в присутствии 96—97%-нои серной кислоты. В этих условиях из нропена получают изомасляную кислоту, а из изобутена — триметилуксусную кислоту [52]. Реакция идет в строгом соответствиш с правилом Марковникова  [c.220]

    Приняв, что скорость нитрования и электронная плотность о- и я-ориентирующих мояозамеш,енных соединений бензола максимальны соответственно в о- и п-положениях по отношению к реакционному центру исследуемых молекул, Ри и Эйринг определили дипольные моменты монозамеш енных бензолов, основываясь на результатах измерения количеств изомерных продуктов нитрования. Найденные авторами таким образом величины дипольных моментов совпали с величинами, наблюдаемых (дипольных.— В. К.) моментов , что позволило Ри и Эйрингу затем провести обратную операцию — вычисление скоростей нитрования из экспериментальных величин дипольных моментов исходных реагентов. Хотя авторы увидели в своей работе лишь метод расчета зарядов атомов в молекулах [там же], их статья явилась фактически первой попыткой применения не общих положений, а кинетического уравнения теории абсолютных скоростей реакций к конкретному случаю определения строения органических молекул. Однако для проведения подобных расчетов Ри и Эйринг сделали важное допущение они считали, что изменение свободной энергии при -активации системы бензол — нитрующий реагент, обусловленное введением заместителей, должно рассматриваться как результат проявления лишь чисто кулоновского взаимодействия атомов в молекуле. Отсюда вытекает возможность индуцирования заместителем зарядов на углеродных атомах бензольного кольца, причем в зависимости от природы заместителя заряды на орто- и пара- или на мета-ато-мах углерода будут больше, чем на остальных атомах. Взаимодействие нитрующего агента и реакционного центра замещенной молекулы также электростатическое. [c.114]

    Для выяснения этих вопросов была изучена кинетика и распределение продуктов гидрогенолиза трех других углеводородов уис-1,3-диметилциклопентана и стереоизомерных — цис-1,4-транс-2- и цис-1,2-трамс-4-триме-тилциклопентанов [157, 158]. Специфические особенности строения ц с-1,3-диметилциклопентана — расположение заместителей через один атом углерода — могли проявитьсядвояко, поскольку, с одной стороны, этот углеводород в определенном отношении сходен с метилцик-лопентаном (СНз-группы достаточно далеки друг от друга), а с другой стороны, у него в отличие от 1,2-ди-метилциклопентана четыре связи экранированы заместителями. [c.143]

    Строение молекулы можно формализовать при помощи теории графов, как это делают Валентинуцци, и получить количественные характеристики структурных параметров. Структурною формулу можно рассматривать как плоский граф, содержащий определенное количество вершин (атомов) и ребер (связей). В первом приближении вершины берутся как бескачественные абстрактные точки, различающиеся лишь числом ребер и своим положенцем на графе. В графе могут встречаться группы однотипных вершин, тождественных по своим характеристикам. Можно рассчитать вероятность нахождения в данном молекулярном графе вершины определенного типа. Так, граф молекулы бензола содержит 12 вершин, из них по шести тождественных для углеродов и водородов. В таком случае вероятность того, что данная вершина окажется атомом углерода, будет Рс = =- . Это же значение имеет вероятность встретить, в вершине атом водорода рн  [c.147]

    Теории валентности и стереохимия развивались в прошлом столетии в очень тесной связи, так что достижения одной обычно были результатом успехов другой. В 1852 г. Фрэнкленд предложил концепцию валентности и показал, что элементы при образовании соединений реагируют с определенными количествами других элементов, и эти количества теперь называют эктшвалентными. Кекуле в 1858 г. и Кольбе в 1859 г. расширили представление о валентности и постулировали, что атом углерода четырехвалентен. В 1858 г. Кекуле предположил, что атомы углерода соединяются друг с другом в неограниченном числе, образуя цепи в том же году Купер ввел концепцию валентной связи и нарисовал первые структурные формулы. Термин химическое строе-ние ввел в 1861 г. Бутлеров, который отметил важность написания простейших формул соединений, показывающих, как соединены атомы в молекулах. Он также установил, что свойства соединений определяются их молекулярным строением, п если известно строение, то можно предсказать свойства. Однако только в 1874 г. был сделан первый основной шаг к наглядному представлению молекулярного строения в трех измерениях. В этом же году Вант-Гофф и ле Бель независимо друг от друга постулировали тетраэдрическое расположение четырех связей атома углерода и таким образом дали возможность классической органической стереохимии по крайней мере. на двадцать лет опередить неорганическую стереохимию. [c.191]

    Уже в теории химического строения Бутлерова постулировалось (и было доказано) существование определенной последовательности химической связи атомов, которая была названа им химическим строением. Бутлеров в 1863 г. весьма определенно высказывался в пользу того, что развитие методов исследования в будущем позволит определить пространственное распЬложение атомов в молекуле, т. е. геометрическую структуру или ее строение (не путать с химическим строением ). В 1874 г. Вант-Гоффом была выдвинута стереохимическая гипотеза, согласно которой четыре водородных атома в метане (или их заместители) расположены в вершиназс тетраэдра, в центре которого находится атом углерода. Эта гипотеза позволила объяснить особый вид изомерии, названный оптической изомерией. Гипотеза Вант-Гоффа была подтверждена структурными исследованиями молекул и лежит в основе стереохимической теории (теории пространственного расположения атомов в молекулах) органических соединений [к-9]. [c.172]

    За исключением глицина, все аминокислоты имеют асимметрический атом углерода, причем в белках у живых организмов обычно встречаются только левовращающие (Ъ-формы)аминокислоты. Ь-Аминокислоты способны попро-шествии больщого периода времени превращаться в рацемическую смесь Ь- и В-форм. Скорость рацемизации зависит от конкретного строения аминокислоты. Для аспарагиновой (а-аминоянтарной) кислоты удалось установить константу скорости рацемизации путем определения возраста костей [c.481]

    Другие направления распада диалкилкетонов связаны с перегруппировкой Мак-Лафферти, которая имеет место, если хотя бы одна из алкильных групп содержит не менее трех атомов углерода и атом водорода в у-положении. Если в образующемся ионе в у-положении есть Н-атом, то реализуется вторая перегруппировка Мак-Лафферти. В обоих случаях в результате перегруппировки образуются ионы с четной массой. Эти фрагментные ионы можно использовать для установления строения алкильных групп в исследуемом кетоне, в частности для определения характера замещения у а-С-атомов. [c.145]

    Следующий этап анализа заключается в определении размера кольца, присутствие которого установлено в исследуемом соединении. Существуют надежные данные, что шестичленные карбоцик-лические системы часто образуют интенсивный ион с М1е = ЪЪ. В масс-спектре исследуемого соединения подобный ион имеется, и можно принять, что молекула этого соединения содержит циклогексановое кольцо. Однако всех данных, которыми мы располагаем на данном этапе анализа, недостаточно для установления строения, так как, если метильная и изопропильная группы присоединены по отдельности к циклогексановому кольцу, все 10 атомов углерода налицо и валентные требования атомов углерода и водорода удовлетворяются при отсутствии кислорода. Отсюда следует, что метильная группа является частью осколка из трех атомов углерода, который в данном случае должен быть гел -диметильной группировкой. Далее, в связи с тем, что эта группа может быть оторвана от циклогексанового кольца без нарушения углеродного скелета, две метильные группы присоединены к циклогексановому кольцу не непосредственно, а через один атом углерода. Таким образом, частичное строение исследуемого соединения может быть представлено в виде [c.51]

    Метод рассуждений, применяемый при определении структуры неизвестного соединения по его масс-спектру, можцо проиллюстрировать следующим примером (рис. 1.1.15). Из ИК-спектров известно только, что соединение содержит кетогруппу. Массовое число молекулярного иона 116, т. е. молекулярная масса моноизотопного соединения равна 116. В масс-спектре наблюдаются также пики ионов с МЧ (/71/е) 117 и 118, интенсивность которых соответственно 6 и 47о. от интенсивности пика молекулярного иона. Соотношение этих интенсивностей говорит о тoм что в состав соединения входит один атом серы, соотношение пиков 116 и 117 позволяет предположить наличие пяти атомов углерода. Это дает основание предложить брутто-формулу СвМаОЗ. Представление о строении соединения дают характеристические пики ионов [c.48]

    Гомотропилиден явился первым органическим соединением, строение молекул которого может быть описано лишь как среднее между двумя равноценными структурами. Крайним примером такого рода жо-лекул с флуктуирующими связями представляется бульвален (СюНю, т. пл. 96 °С)—соединение, для которого существует Ю /3 = = 1 209 600 структурно идентичных взаимопревращающихся подвижных структур (пермутаций). В этой структуре не существует фрагмента из двух атомов углерода, связанных продолжительное время друг с другом 10 атомов углерода непрерывно меняют свое положение, каждый из них комбинируется попеременно с любым из других за счет перегруппировки Коупа. При этом меняется геометрия молекулы (т. е. длины связей и углы между ними) две пермутации существенно различаются относительным расположением своих атомов. Этот случай определенно отличается от мезомерии, при которой делокализация л-связей происходит на основе фиксированного скелета а-связей. При валентной изомеризации каждый атом водорода попеременно занимает четыре разных положения (два винильных, Ьддо циклопропильное и [c.237]

    Определением скорости этерификацииодноосновных алифатических кислот можно установить, является ли данная кислота первичной, вторичной нлн третичной, т. е. с каким числом водородных атомов связан атом углерода, соседний с карбоксилом. Чтобы получать сравнимые между собой результаты, всегда следует вести этерификацию одним и тем же алкоголем. Обычно для этой цели применяют изобутиловый алкоголь. Вступление фенильных групп в уксусную кислоту очень сильно уменьшает скорость ее этерификации О влиянии строения на скорость этерификации ароматических кислот см. А, TV, 12. [c.361]

    В любом кристалле, независимо от характера и строения кристаллической решетки, частица, находящаяся в узле решетки, имеет вполне определенное и характерное для данного кристалла число ближайших соседей. Так, в решетке алмаза каждый атом углерода имеет четыре ближайших соседа в решетке КаС1 каж-(Ю [c.90]

    Тонкое строение графита было установлено рентгенографическими исследованиями Дебая и Шеррера (1917), а также Хасселя и Марка (Hassel, Mark, 1924), На рис. 84, а показана элементарная ячейка решетки графита. На рис. 84, 6 для наглядности, помимо узлов решетки, входящих в элементарную ячейку, указаны и другие узлы. Из рисунков видно, что речь идет о слоистой решетке. Каждый атом углерода окружен тремя другими атомами С, лежапщми в одной плоскости на расстоянии 1,45 A. На несколько больших и равных между собой расстояниях (2,46 А) в той же плоскости лежат еще шесть атомов углерода, также окружающих рассматриваемый атом. В кристаллической решетке отчетливо проявляются определенные, плотно заполненные атомами, параллельные плоскости, которые удалены на достаточно большие расстояния — 3,345 A. Они сдвинуты друг относительно друга так, что над серединой каждого шестиугольника одной плоскости лежит атом С соседней плоскости. Плоскости, находящиеся на двойном расстоянии (6,69 A), обладают одинаковым, расположением узлов. [c.462]

    Результаты измерений можно представить в виде силы К критической смеси, которая определяется отношением количества воздуха, необходимого для процесса, когда нет образования сажи, к тому количеству воздуха, которое требуется для того, чтобы превратить весь углерод в двуокись углерода. В этом случае порядок в ряду саженосности несколько иной, чем если его определять из измерения критического соотношения воздух топливо, а именно ацетиленОльдегиды, кетоны, эфиры <олефины<парафнны<спирты<бензолы<нафталины. Отсюда видно, что ацетилен обладает поразительно малой способностью к образованию сажи, а спирты, наоборот, ненормально высокой (заметим, что это относится к пламени предварительно перемешанных смесей). Повторные исследования [44] показали, однако, что если соответствующим образом представить результаты, то между строением молекулы горючего и способностью его образовывать сажу существует вполне определенная взаимосвязь а) и для нормальных, и для разветвленных парафинов наблюдается линейная зависимость между числом атомов углерода в молекуле и числом атомов кислорода на молекулу горючего вещества, необходимым для того, чтобы подавить образование сажи б) нормальные парафины требуют на один атом О на молекулу больше, чем соответствующие олефины, а олефины в свою очередь требуют на один атом кислорода на молекулу больше, чем соответствующие ацетилены в) в случае нормальных парафинов и олефинов каждая дополнительная группа СН вызывает некоторое увеличение числа атомов кислорода, необходимых для подавления процесса образования углерода, то же наблюдается и при добавлении групп СН в бензол г) если топливо содержит алкильные группы, присоединенные к бензольному кольцу, для подавления процесса образования сажи [c.277]


Смотреть страницы где упоминается термин Углерод, определение строение атома: [c.55]    [c.72]    [c.398]    [c.402]    [c.97]    [c.34]    [c.1660]    [c.372]    [c.350]    [c.417]    [c.93]    [c.107]    [c.138]   
Курс органической химии (1979) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Атомов строение



© 2024 chem21.info Реклама на сайте