Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильное замещение галогенирование, механизм

    Электрофильное замещение в молекуле фенола протекает с большей легкостью, чем в бензоле. Сам фенол нитруется разбавленной азотной кислотой, нитрозируется азотистой кислотой, трибромируется бромом и сочетается с солями диазония (во всех случаях достаточно быстро при температурах, не превышающих комнатной). Скорости замещения фенолов оказались неожиданно высокими [161] по сравнению с фениловыми эфирами (например, для бромирования Л анизол/ Сфенол = 92). Этот факт обьясняют влиянием индуктомерного эффекта (электроны связи О—Н) на сопряжение в переходном состоянии важное значение имеет и образование водородных связей с растворителем. В большей части обзоров ароматическое замещение рассматривается с точки зрения механизма и реагентов (не отделяя химии фенолов), однако и в этих общих обзорах можно найти весьма полезную информацию [162]. Имеется сводка литературы по электрофильному замещению самого фенола [163]. Нитрование фенола в органических растворителях проходит необратимо, причем для различных растворителей характерно постоянное значение соотношения орто/лара-замещения. Галогенирование также протекает необратимо, однако с меньшим соотношением орго/лара-продуктов, чем при нитровании, тогда как сульфонирование и алкилирование [c.236]


    Радикальный и ионный механизмы реакции галогенирования. Нуклеофильное замещение при насыщенном атоме углерода. Механизмы 5д,1 и 5д,2. Зависимость механизма реакции от строения исходных веществ и условий реакции. Электрофильное замещение в ароматическом ядре (5 ). Галогенирование ароматических соединений. Механизм реакции, я- и о-Комплексы. [c.76]

    Галогенирование ароматических соединений, так же как и нитрование, сульфирование и ацилирование, выгодно отличается от других реакций ароматических соединений тем, что эта реакция легко может быть проведена ступенчато, без применения специальных мер предосторожности, так как введение галогена в ароматическую систему пассивирует кольцо и препятствует дальнейшей реакции. Механизм галогенирования в соответствии с общей картиной реакций электрофильного замещения заключается в атаке кольца положительным атомом галогена и последующем отщеплении протона  [c.60]

    Химические свойства. Для аренов наиболее характерны реакции электрофильного замещения нитрования, сульфирования, галогенирования, алкилирования и ацилирования по Фриделю — Крафтсу, нитрозирования и т. д. Механизм всех этих реакций единый  [c.232]

    Реакции галогенирования в присутствии катализаторов протекают по механизму электрофильного замещения. Катализатор поляри- [c.435]

    К реакциям электрофильного замещения 8е относятся процессы замещения водорода в ароматическом ряду, реакции нитрования и сульфирования, галогенирования в присутствии катализа торов, реакции обмена металлов в металлорганических соединен ниях и т. п. Наиболее изучены реакции обмена металлов в металлорганических соединениях. При этом возможны три механизма реакций. [c.219]

    Опыт 80. б) Отсутствие обесцвечивания раствора в реакции бензола с бромом свидетельствует об инертности бензола — не происходит ни присоединения по двойной связи, ни замещения водорода в ядре (выделяющаяся кислота изменила бы цвет индикатора и образовала бы дым с аммиаком). Реакция замещения может протекать лишь с активированным ароматическим соединением или активированной частицей галогена. Галогенирование в ядро протекает по механизму электрофильного замещения (5 ). Активирование (поляризация) галогена осуществляется действием катализаторов (часто кислот Льюиса, например галогенидов железа, алюминия). Реакция протекает через я- и ст-комплексы. (Подробнее см. учебник Органическая химия , с. 426.) Следующий атом галогена вступает в кольцо в орто- или пара- положении по отношению к имеющемуся. [c.277]


    В отличие от рассмотренного в гл. 5 галогенирования в ароматическое кольцо, которое идет по механизму электрофильного ароматического замещения, галогенирование в алкильные группы — реакция радикальная. Активным реагентом > этой - реакции является [c.231]

    Хлорирование 2-метилпиразина проходит в весьма мягких условиях, и это позволяет утверждать, что в данном случае реализуется механизм присоединения — элиминирования, а не механизм классического электрофильного замещения [17]. Галогенирование пиримидина, возможно, также реализуется аналогичным образом [18]. [c.260]

    В зависимости от условий галогенирования процесс протекает по разным механизмам. Так, галогенирование ароматических углеводородов в присутствии галогенидов железа, алюминия, сурьмы, способствующих образованию галоген-катиона, протекает по электрофильному механизму замещения. На примере хлорирования схема выглядит так  [c.134]

    Молекулы гомологов бензола состоят как бы из двух частей — алифатической и ароматической. Меняя условия реакции, можно ввести галоген либо в арильный (по механизму электрофильного замещения), либо в алкильный радикал (по свободнорадикальному механизму). Галогенированию в основном подвергается атом углерода алкильного радикала, непосредственно связанный с ароматическим кольцом. [c.135]

    Сопоставьте механизм сульфирования с механизмом других.реакций электрофильного замещения в ядре бензола, например галогенирования. Сравните строение о-комплексов, образующихся при этих реакциях, и кинетику процессов. [c.124]

    Эта реакция протекает по механизму электрофильного замещения и, следовательно, аналогична другим реакциям электрофильного замещения в ароматиче ском ряду — нитрованию, сульфированию, галогенированию и т. д. Вследствие значительной делокализации положительного заряда катион диазония не относится к числу сильных электрофильных реагентов. [c.116]

    Галогенирование ароматических углеводородов. Хлорирование и бромирование протекает по механизму электрофильного замещения нЗарои- Катализаторами являются кислоты Льюиса, чаще всего галогениды железа и алюминия. Например, хлорирование бензола может быть представлено следующей схемой  [c.85]

    Наряду с этими реакциями, механизм которых еще мало известен, существует другая группа реакций, которые с формальной точки зрения относятся к числу реакций электрофильного замещения. Речь идет о реакциях замещения подвижного водорода у псевдокислот, вроде, например, галогенирования кетонов. Однако эти реакции, катализируемые кислотами и основаниями, по своему механизму не являются истинными процессами замещения, и более правильно отнести их к другой категории реакций, называемых прототропными (стр. 143, 152). [c.114]

    Выше в качестве общей схемы механизма реакций электрофильного ароматического замещения мы уже рассмотрели механизм бромирования бензола в присутствии бромного железа в качестве катализатора. На практике в качестве катализатора при галогенировании применяют, как правило, железные стружки. Катализатор в таком случае образуется непосредственно в реакционной массе при взаимодействии железных стружек с галогеном. [c.415]

    Другие реакции галогенирования, такие, как действие однохлористого иода и однобромистого иода, также дают продукты замещения в положении 2. Хотя механизм действия этих реагентов еще окончательно не установлен, однако скорее всего они являются электрофильными реагентами. Те же соображения относятся и к реакции ацетоксимеркурирования дифенилена. Так, известно, что в ряде случаев меркурирование часто сопровождается образованием продуктов с аномальной ориентацией, причем в некоторых случаях ацетат ртути в уксусной кислоте реагирует по гомолитическому механизму [102]. [c.96]

    Выше (см. с. 32) уже упоминалось парофазное галогенирование пиридина, которое при достаточно высокой температуре дает смеси, состоящие главным образом из 2-(и 2,6-ди)галогенпиридинов [242]. Избирательность а-замещения согласуется с радикальным механизмом, особенно в свете того факта, что фотохимический процесс дает почти исключительно 2-галогенпиридины [243], а электрофильное галогенирование направлено преимущественно в положение 3 (см. с. 32). [c.53]

    Уже в начале 1950-х годов некоторые химики, исследовавшие механизм реакций галогенирования замещенных ацетиленов, пришли к выводу о преобладании нуклеофильного присоединения по тройной связи. Это явление было объяснено влиянием заместителей на подвижность электронов тройной связи и электрофильным характером ацетиленовых атомов углерода [437, 438]. [c.93]

    Вместе с тем многообразие и большое своеобразие органических реакций приводит к необходимости и целесообразности их классификации по другим признакам 1) по электронной природе реагентов (нуклеофильные, электрофильные, свободнорадикальные реакции замешения или присоединения) 2) по изменению числа частиц в ходе реакции (замещение, присоединение, диссоциация, ассоциация) 3) по частным признакам (гидратация и дегидратация, гидрирование и дегидрирование, нитрование, сульфирование, галогенирование, ацилирование, алкилирование, формилирование, карбоксилирование и декарбоксилирование, энолизация, замыкание и размыкание циклов, изомеризация, окислительная деструкция, пиролиз, полимеризация, конденсация и др.) 4) по механизмам элементарных стадий реакций (нуклеофильное замещение 8м, электрофильное замещение 8е, свободнорадикальное замещение 8к, парное отщепление, или элиминирование Ё, присоединение Ас1е и Ас1к и т. д.). [c.184]


    При исследовании механизма реакции электрофильного замещения шведский химик Л. Меландер применил изотопный метод. Оказалось, что соединения, меченные дейтерием и тритием, замещаются с такой же скоростью, что и водородсодер-жащие аналоги, т. е. заметного изотопного кинетического эффекта для большинства реакций (за исключением реакции сульфирования) не наблюдается. Учитывая, что энергия разрыва связей углерод — дейтерий и углерод — тритий выше, чем энергия связи С—Н, можно заключить,. что последняя стадия реакции электрофильного замещения — отрыв протона —не должна быть лимитирующей. Следовательно, относительно медленной, лимитирующей стадией является образование промежуточных соединений. Известно, что образование я-комплексов — быстрый. процесс, значит, панболес медленная стадия — изомеризация я-комплекса и а-комилекс. Это подтверждается, например, наличием корреляции между скоростями реакции галогенирования гомологов бензола и устойчипостью а-комплексов, в то время как подобная корреляция с устойчивостью л-комплексов отсутствует. [c.248]

    Обычно реакции электрофильного замещения протекают при действии достаточно энергичных электрофильных реагентов к реакциям такого типа в ароматическом ряду относятся хорошо изученные процессы электрофильного замещения водорода реакции нитрования и сульфирования, реакция Фриделя—Крафтса, а также галогенирование в присутствии катализаторов—Al lg и т. п. В противоположность реакциям ароматических веществ реакции нитрования и галогенирования предельных соединений алифатического и алициклического ряда протекают по радикальному механизму (стр. 870 и 876). [c.327]

    Механизм галогенирования в бензольном кольце представляет собой электро-фш1ьное-замещение. Роль катализаторов (РеВгз, 12) заключается в образовании с молекулой галогена комплекса, оттягивании электронов >и образовании положительно заряженной частицы галогена, вступающей в электрофильное замещение  [c.140]

    Электрофильное замещение в молекуле фенола протекает с большей легкостью, чем в бензоле. Сам фенол нитруется разбавленной азотной кислотой, нитрозируется азотистой кислотой, трибромируется бромом и сочетается с солями диазония (во всех случаях достаточно быстро при температурах, не превышающих комнатной). Скорости замещения фенолов оказались неожиданно высокими [161] по сравнению с фениловыми эфирами (например, для бромирования анизол/ фенол — 92). Этот факт обьясняют влиянием индуктомерного эффекта (электроны связи О—Н) на сопряжение в переходном состоянии важное значение имеет и образование водородных связей с растворителем. В большей части обзоров ароматическое замещение рассматривается с точки зрения механизма и реагентов (не отделяя химии фенолов), однако и в этих общих обзорах можно найти весьма полезную информацию [162]. Имеется сводка литературы по электрофильному замещению самого фенола [163]. Нитрование фенола в органических растворителях проходит необратимо, причем для раз-л-ичных растворителей характерно постоянное значение соотношения орго/лара-замещения. Галогенирование также протекает необратимо, однако с меньшим соотношением орго/пара-продуктов, чем при нитровании, тогда как сульфонирование и алкилирование по Фриделю — Крафтсу обратимы. При сульфонировании при низких температурах получают главным образом орто-продукты, при более высоких температурах — мара-продукты. При длительных реакциях накапливаются значительные количества жета-сульфо-новой кислоты, так как десульфонированне жета-сульфоновой кислоты является самым медленным из всех обратных процессов. При алкилировании по Фриделю — Крафтсу также наблюдаются различия в соотношении орто/пара-продуктов при кинетическом и термодинамическом контроле. При бромировании 3,5-диалкил-фенолов выделено диеноновое промежуточное производное (135). [c.236]

    Известны, конечно, и многие другие работы, посвященные исследованию кинетики электрофильного замещения в ароматическом кольце, в частности кинетики галогенирования активированных ароматических соединений, таких, как фенолы и анилины. Последние реакции часто усложняются влиянием pH и концентрации галоген-ионов на равновесия между различными галогенирующими частицами и различными формами ароматических молекул. Лищь в редких случаях проводилось непосредственное исследование влияния роли оснований на реакцию переноса протона. Однако общирная информация о механизме этих реакций была получена из данных по изотопным эффектам, которые будут рассмотрены в гл. 12. [c.226]

    Первые главы книги, в которых излагаются основы теории строения молекул, природа химической связи, электронные эффекты, физические свойства молекул, представления об ароматичности и классификация реагентов и реакций, принципиально не отличаются от первого издания. Последующие главы, связанные с механизмами органических реакций, существенно изменены и дополнены. Так, сильно расширена глава, посвященная замещению в ароматическом ряду, в результате включения в нее реакций нуклеофильного и радикального замещения в бензольном ядре. Естественно, что основная часть этой главы посвящена электрофильному замещению в бензольном кольце. Этот раздел также существенно расширен за счет новых данных, полученных в 1953—1969 гг. В первом издании основные закономерности в ароматическом ряду (природа электрофильного агента, механизм реакции, правила ориентации) разбирались на примере реакции нитрования. Во втором издании эти вопросы оказалось более удобным разбирать на примере галогенирования, поскольку большинство имеющихся в настоящее время данных получено именно для этой реакции. Кроме классических реакций электрофильного ароматического замещения, где уходящей группой является протон, рассмотрена большая группа реакций протодеметаллирования ароматических производных элементов IV группы АгЭАШз (Э = 31, Ое, 8п, РЬ). [c.6]

    С помощью аргументов, абсолютно аналогичных изложенным выше при 1)ассмотрении нуклеофильного замещения, можно показать, что в ряду ароматических соединений не только нитрование, по и нитрозирование, галогенирование, сульфирование, реакция Фриделя — Крафтса (ацилиро-иание и алкилирование), водородный обмен между ароматическим соединением и сильной кислотой, азосочетапие и меркурироваиие относятся к типу электрофильного замещения независимо от того, известен или не известен их механизм. [c.211]


Смотреть страницы где упоминается термин Электрофильное замещение галогенирование, механизм: [c.152]    [c.367]    [c.214]    [c.214]    [c.26]    [c.281]    [c.75]    [c.68]    [c.519]    [c.354]    [c.127]    [c.390]    [c.85]   
Органикум Часть2 (1992) -- [ c.441 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение механизм

Замещение электрофильное

Реакции присоединения. Гидрирование, галогенирование Восстановление по Берчу. Реакции окисления Озонирование Реакции электрофильного замещения. Механизм

Электрофильное механизм

Электрофильность



© 2025 chem21.info Реклама на сайте