Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аргон в промышленных газах

    При анализе природных газов приходится встречаться с газообразными элементами и соединениями, к числу которых в первую очередь относятся кислород, водород, азот, углекислый газ, окись углерода, сероводород, сернистый ангидрид, метан, этан, пропан, бутан и другие высшие парафиновые углеводороды, редкие газы (гелий, неон, аргон, криптон, ксенон). В промышленных газах главным образом встречаются окислы азота, сернистый и серный ангидрид, аммиак, водород, окись углерода, предельные и непредельные углеводороды, галоиды и их производные, пары разнообразных органических соединений. [c.3]


    Отделение промышленных газов и оборудования — кислород, азот, водород, аргон и другие газы, карбид кальция и ацетон, газосварочные аппараты и оборудование для резки и термической обработки металлов, охлаждающие смеси и установки для получения сверхнизких температур. [c.116]

    Охлаждение до —100 °С, (173 К) принято считать умеренным, а ниже —100 °С — глубоким. Для получения жидких промышленных газов (кислорода, азота, водорода, аргона, гелия, фтора и метана) требуется глубокое охлаждение, которое достигается следующими способами  [c.21]

    Назначение, принцип работы и конструкции газгольдеров. Газгольдеры предназначены для хранения кислорода, азота, аргона, водорода и других промышленных газов. Различают газгольдеры переменного и постоянного объема с постоянным и переменным давлением, сухие и мокрые, каждый из которых может быть тупиковым или проходным. [c.195]

    Время единственным практически возможным для применения в большом масштабе при разделении воздуха на кислород, азот, аргон, иногда с выделением некоторых из редких газов. Он в известной степени применялся для разделения различных промышленных газов, например водяного или [c.541]

    В условиях пайки взаимодействие металлов с газами может происходить в процессе подготовки элементов изделия к пайке, при нагреве, выдержке и охлаждении. Если пайка производится в атмосфере воздуха, то незащищенные от влияния окружающей среды поверхности деталей окисляются. Стали, кроме того, обезуглероживаются на различную глубину в зависимости от температуры и состава газа. При пайке в атмосфере водорода, диссоциированного аммиака, азота, аргона, гелия, продуктов сгорания естественных или промышленных газов одновременно с процессом удаления окисной пленки с поверхностей основного металла и припоя могут происходить взаимодействия металлов с компонентами газовых сред, а также с неизбежными примесями в них в виде кислорода и паров воды. Начальной стадией этого взаимодействия является адсорбция, которая происходит в условиях, когда для газов характерна большая подвижность и неупорядоченность частиц, а металлам, наоборот, свойственна жесткая закрепленность и упорядоченность частиц. Молекулы газа, хаотично перемещаясь, попадают в сферу действия положительно заряженных ионов внешней грани кристаллов металла, в результате чего они адсорбируются поверхностью, располагаясь в определенном кристаллографическом порядке. [c.123]


    Термодинамические свойства некоторых промышленных газов весьма подробно представлены в двух недавних публикациях. В первой из них [1] приводятся физические и термодинамические свойства воздуха, аргона, двуокиси и окиси углерода, водорода, азота, кислорода и водяного пара. В книге Дина [2] рассматриваются аммиак, двуокись и окись углерода, воздух, ацетилен, этилен, пропан и аргон. Свойства гелия подробно изложены Кеезомом [3]. [c.306]

    Атмосфера служит источником для получения таких промышленных газов, как аргон, диоксид углерода, азот и кислород. Гелий и водород в настоящее время получают из природного газа, жидких углеводородов и угля, т. е. ресурсов, которым угрожает возможное истощение. Потребность в резервах кислорода в атмосфере намного больше благодаря естественным и искусственным процессам сгорания. Наша невольная зависимость от этих реакций приводит к тому, что вопросы истощения воздуха приобретают большое значение. До каких пределов наши потребности могут компенсироваться реакциями образования кислорода (фотосинтезом) Возможна ли ситуация, когда в результате проводимых термических, химических или физических процессов окружающая среда будет загрязнена настолько, что фотосинтез прекратится Каково возможное влияние на эту реакцию диоксида углерода и твердых частиц, попадающих в атмосферу  [c.114]

    Способность цеолитов одновременно адсорбировать пары воды и СО 2 можно использовать для решения очень важной промышленной задачи — создания защитных атмосфер, необходимых при обработке металлов, спекании металлокерамики, специальной пайке и т. п. (применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей). Одновременно с парами воды и двуокисью углерода из воздуха под давлением при помощи цеолитов могут удаляться и углеводороды, в частности ацетилен. Кроме того, совместная адсорбция паров воды и СО 2 открывает перспективу для решения вопроса о тонкой осушке, об очистке некоторых газов, используемых в промышленности (воздуха, азото-водородной смеси, углеводородов и т. д.). Наряду с предварительной осушкой и очисткой воздуха цеолиты могут применяться и для очистки продуктов его разделения, например очистка аргона от кислорода и других примесей (азота, водорода и углеводородных газов). [c.111]

    Источником получения кислорода и азота, а также большинства инертных газов (кроме гелия) является атмосферный воздух, запасы которого практически неисчерпаемы и составляют 5,1 -10 т. Состав воздуха, за исключением оксида углерода (IV) и паров воды, постоянен. Воздух содержит (по объему) азота 79,09%, кислорода 20,95%, аргона 0,93%, а также незначительные количества неона, криптона, ксенона, гелия (1,6-10 — 8-10 %) и водорода (5-10 %). Содержание оксида углерода (IV) изменяется в зависимости от близости к населенным пунктам и промышленным предприятиям и составляет, в среднем, [c.229]

    В промышленности разделение воздуха с целью получения кислорода, азота и аргона осуществляется путем сжижения его с последующей низкотемпературной ректификацией. Изучается также возможность разделения воздуха методом абсорбции на цеолитах и диффузионным методом, основанном на различной скорости диффузии газов через полупроницаемые мембраны. [c.229]

    Получение и очистка газов. Большинство измерений в электрохимии проводят в отсутствие кислорода воздуха, который является электрохимически активным. В связи с этим исследования выполняют в атмосфере инертных газов азота, аргона, гелия. В ряде систем возможно использование водорода, который, однако, может проявлять электрохимическую активность на некоторых электродах при анодных потенциалах, Эти газы выпускаются промышленностью разной степени очистки. Если содержание кислорода в газах не превышает 0,005 %. то для большинства исследований нет необходимости в дополнительной очистке газов от следов кислорода и их очищают лишь от органических примесей пропусканием через трубки, заполненные активированным углем. При большом содержании кислорода в газах возникает необходимость его удаления. [c.31]

    Применение. Благородные газы нашли широкое применение в промышленности. Ими заполняют электролампы различных типов. Гелий и аргон используются для создания инертной атмосферы, например, при сварке алюминиевых сплавов. [c.107]

    Нашей промышленностью выпускается аргон (ТУ МХП 4315—54) двух составов (№ 1 и № 2) со следующим содержанием основного газа и примесей (в %)  [c.297]

    Более 99% атмосферы составляют три газа— азот, кислород и аргон. Их содержание в воздухе по объему равно 78,09, 20,95 и 0,93% соответственно. Около 0,03% атмосферы образует диоксид углерода, однако его содержание не всюду одинаково, так как оно зависит от биологической активности и промышленной деятельности в различных частях Земли. Озон существует в основном на уровне стратосферы, где он принимает участие в реакции, делающей возможной жизнь на земной поверхности. Эта реакция представляет собой поглощение ультрафиолетового солнечного излучения кислородом, в результате чего он превращается в озон [c.444]


    По химическому составу воздух состоит в основном из четырех газов. Их объемные, а значит и мольные проценты следующие N2 — 78,08, О2 — 20,95, Аг — 0,93, СО2 — 0,03. Однако, в следовых количествах там также присутствуют (млн ) Ne — 18, Не — 5, СН4 — 1,5, Кг — 1,1, Hg — 0,5, Хе — 0,1. Поэтому наша атмосфера является основным промышленным сырьем для получения азота, кислорода, аргона, неона, криптона и ксенона. [c.26]

    Для нроизводства ПГС применяют технические и чистые газы, поставляемые промышленностью в сжиженном или сжатом состоянии в баллонах под давлением. Обычно ПГС состоят из одного или двух определяемых компонентов в среде газа-разбавителя (например, СО и Н2 в азоте, N2 в аргоне, СН4 и другие углеводороды в воздухе и т.п.). При приготовлении ПГС следует учитывать несовместимость некоторьгх газов, т.е. возможность взаимодействия между ними в обычных условиях или в присутствии того или иного третьего компонента. Это в дальнейшем приводит к погрешностям в градуировке средств измерения. Несовместимы аммиак и галогены, аммиак и галогеново-дороды, аммиак и оксид хлора, ацетилен и хлор, водород и оксид хлора (при освещении), водород и хлор (при освещении), оксид азота и кислород, оксид азота и хлор (в присутствии паров воды), оксид углерода и хлор (при освещении), сероводород и кислород (в присутствии паров воды), сероводород и диоксид углерода (в присутствии паров воды), углеводороды (алифатические) и хлор (при освещении), этилен и хлор. [c.917]

    Промышленные установки глубокого охлаждения широко распространены в отечественной промышленности. Кислород, если не считать электролиза воды, почти исключительно получается этим методом. Азот и большая часть водорода для заводов синтеза аммиака получаются глубоким охлаждением. Этим же путем извлекают из воздуха аргон, неон, ксенон, криптон и из природных газов — гелий. [c.35]

    В настоящее время получила применение в промышленных масштабах плавка и разливка специальных сплавов и сталей в вакууме, а также в среде таких нейтральных газов, как аргон, гелий. При плавке и разливке в вакууме при давлении 10 —10 мм рт. ст. получается высокая степень очистки жидкого металла от газов, которые находятся как в виде отдельных включений (пузырей), так и в растворенном состоянии, или в свободном виде или в виде химических соединений (окислы, нитриды, гидриды и т. д.). [c.229]

    Трудность при осуществлении процесса дегазации состоит в том, что нужно обеспечить наибольшую свободную поверхность расплавленного металла за короткое время, что, учитывая большие количества металла, нелегко выполнить. С этой целью был использован метод газового дутья, который дает возможность создать аппаратуру без движущихся частей. Схема метода приведена на фиг. 198, а. В сосуде 1 создается вакуум и жидкий металл поднимается по трубам 2 и 5 за счет разности между атмосферным давлением над поверхностью жидкого металла в сосуде 4 и давлением в сосуде 1. Высота подъема столба стали—140 см. В точках 5 и б трубы 2 вводится инертный газ, например аргон. Газ, проходя через жидкий металл, частично захватывает его с собой и обеспечивает его подъем на определенную высоту. В верхней части сосуда устанавливаются отражатели 7. Проверка этого метода проводилась в -промышленных условиях для дегазации от 30 до 100 т стали [221] и дала удовлетворительные результаты. На фиг. 198, б показана принципиальная схема установки для дегазации в соответствии с предложенным методом. Дополнительное устройство позволяет в конце вакуумной обработки добавлять в открытый ковш необходимые присадки (Si, Al). Между трубами 2 и 5 установлена термопара 8. [c.346]

    Кроме аргона, в качестве газа-носителя можно использовать водород или гелий. Чувствительность при использовании водорода намного меньше. Продолжительность жизни водородных атомов в возбужденном состоянии слишком мала. Гелий, выпускаемый промышленностью, не может применяться как газ-носитель без предвари- [c.430]

    Цеолит NaA адсорбирует большинство компонентов промышленных газов, критический размер молекул которых не превышает 0,4 нм сероводород, сероуглерод, диоксид углерода, аммиак, низшие диеновые и ацетиленовые углеводороды, этан, этилен, пропилен, органические соединения с одной метильной группой в молекуле, а также метан, неон, аргон, криптон, ксенон, кислород, азот, оксид углерода. Последняя группа веществ в значителышх количествах поглощается только при низких температурах. Пропан и органические соединения с числом атомов углерода в молекуле более 3 не адсорбируются цеолитом и таким образом при осушке и очистке не подавляют адсорбцию указанных выше примсссй. [c.367]

    Промышленный газ, содержащий 70% Нз, 23% Мг, 0,3 — 0,5% СН4, 3,5% СО, 2,3% СОг, 0,1—0,2% Ог, 0,2—0,3% аргона, 0,3—0,8% N0 Газ, очищенный от N0 и Ог ZnO—СггОз—СиО (1 0,05—1,0 0,03 — 10, вес.), с добавками МпО, MgO, AI2O3, ТЮг (по 0,05—15% от веса основного состава катализатора) 26 бар, 150—200° С, 10000 ч [305] [c.630]

    В настоящее время научно-технический прогресс невозможен без использования криогенных жидкостей — жидких кислорода, азота, аргона, водорода, фтора и гелия. Эти сжиженные газы нашли самое широкое применение в различных областях новой техники, в том числе в ракетной технике и атомной энергетике, при получении низких температур и т. д. Потребление промышленных газов с каждым годом неуклолно возрастает. [c.6]

    В промышленных газах, полученных в результате хпхмической и термической переработки твердого и жидкого топлив и других веществ, не может быть значительной примеси таких компонентов, как гелий, неоп. Незначительная примесь аргона связана с попаданием в систему воздуха вследствие каких-либо неисправностей. Лишь в отдельных случаях примесь азота воздуха объясняется особенностями технологического процесса. Содержание аргона в азоте воздуха составляет около 1%, а содержание других редких газов ничтожно, поэтому примесь их, включая и аргон, не оказывает существенного влияния на показания описанного прибора. В тех же случаях, когда содержание редких газов велико, следует применять специальные методы анализа (см. главы II—VII). [c.84]

    Состав газообразного аргона промышленного производства соответствует ГОСТ 10157—62. Аргон выпускают трех марок А — для сварки и плавки активных и редких металлов (Т , 2г, ЫЬ) и сплавов на их основе, а также для сварки особо ответственных изделий из других материалов на заклю1,ит льных этапах изготовления Б — для плавки и сварки плавящимся и неплавя-щимися вольфрамовым электродом сплавов на основе алюминия и магния, а также других сплавов, чувствительных к поимесям газов, растворимых в металле В — для сварки и плавки нержавеющих хромонике-леьых жаропрочных сплавов, легированных сталей различных марок и чистого алюминия. [c.96]

    Общий газовый анализ применяется для определения концентрации наиболее часто встречающихся компонентов газовых смесей. К их числу относятся прежде всего азот и кислород. Наличие кислорода и азота в таком же соотношении, как в воздухе, свидетельствует о попадании воздуха в анализируемый газ. Другим часто встречающимся компонентом газовых смесей является углекислый газ, образующийся при сгорании различных видов топлива, химической переработки нефтяного сырья. Природные и промышленные нефтяные газы состоят в основном из углеводородов. При общем газовом анализе определяют содержание таких компонентов, как СО2, С0иК2,02, Н2, суммы предельных и суммы непредельных углеводородов. Азот, будучи инертным газом, при общем анализе определяется по разности как остаток после удаления других газов. При наличии в анализируемом газе азота атмосферного происхождения ему всегда сопутствует аргон (около 1% по отношению к азоту) и весьма небольшие количества других редких газов Не, N6, Кг, Хе. [c.240]

    На рис. 28 приведены данные по усредненному выходу аммиака при 450—525°С и различных содержаниях инертных газов (метана и аргона) в циркуляционной азотоводородной смеси для промышленного катализатора. [c.91]

    Аммиак М1з образуется при взаимодействии ЗН2 + N3, однако кинетические исследования наряду с данными, полученными на промышленных установках, показывают, что скорость получения аммиака можно увеличить, если синтез-газ содержит несколько больше N2, например имеет состав 2,5 НзгКз /6/. Смесь азота и водорода пропускают над специально приготовленным железным катализатором со скоростью 10 000-55 ОООГрИ ( ч , поддерживая температуру 450-520°С и давление 140-1000 атм. Реакция экзотермична, и внутри реактора помещают теплообменник так, чтобы теплоту реакции можно было использовать для предварительного нагрева исходных газов. Холодные входяшие газы сначала проходят вдоль внутренней стенки работающего под давлением реактора, охлаждая их, и лишь затем попадают на катализатор, находящийся внутри реактора под давлением. Реакция является равновесной, и реагенты достигают равновесия только перед выходом из реактора. Конверсия за проход составляет 50-80% от равновесной. Отходящие газы охлаждаются, жидкий аммиак отделяется, а непрореагировавшие газы возвращаются в цикл. Газ всегда содержит некоторое количество метана, аргона и других инертных примесей, поэтому прежде чем газ возвращается в цикл, часть его стравливается. Скорость образования аммиака составляет около 30 кг на 1 л катализатора в сутки. [c.225]

    Помимо азота и кислорода воздух содержит редкие газы — аргон, неон, гелий, криптон, ксенон — и являюгся источником для получения этих газов в промышленных масштабах [71]. [c.427]

    В промышленности азот N2 получают при фракционной дастилляции жидкого воздуха (одновременно получают кислород) или удалением из воздуха кислорода химическим путем, например по реакции 2С (кокс) ч- = 2СО при нагревании. В этих случаях получают азот, содержащий примеси благородных газов (главным образом, аргона). [c.135]

    Распространение в природе. Инертные элементы полиизотопньг. Например, у криптона 6, а у радона даже 16 радиоактивных изотопов. Содержание благородных газов в воздухе соетавляет от 0,932% (об.) аргона до 10 % (об.) ксенона. В литосфере также в наибольших количествах содержится аргон [3,5-10 1% (мае.)], несколько меньше гелия и неона [8—5-10 % (мае.)], еще меньше криптона и ксенона [1,9-10 и 2,9" % (мае.)]. Минимально содержание в земной коре радона 4-10 1 % (мае.). Промышленные месторождения гелия обычно сопровождают в недрах Земли залегания природных газов некоторые из них содержат до 8% (об.) гелия. [c.402]

    Технология углеродных волокон включает окисление исходного химического волокна для стабилизации его свойств, карбонизацию в защитной атмосфере и последующую термообработку вплоть до графитации [132]. Промышленная установка для получения углеродных тканей с заданным электросопротивлением представляет собой электропечь с помещенной в нее реакционной камерой из нержавеющей стали [9, с. 206—210]. Общая длина реакционной зоны составляет 2,5—3 м. В установке обеспечивается длительная изотермическая выдержка ткаяых материалов в инертной среде при 600—900 °С. Это осуществляется непрерывной протяжкой обрабатываемой ткани через камеру со скоростью 0,2-12 м/ч. Предварительный подогрев подаваемого в печь инертного газа (азот, аргон) при избыточном давлении до 100 Па исключает охлаждение отдельных участков ткани. За один цикл получается примерно 300-350 м ткани в течение 10-15 сут в зависимости от требуемого режима. [c.233]

    Перед началом электролиза большую часть растворенного кислорода можно удалить пропусканием инертного газа через раствор. При работе с небольшими oб ь Ia [и, особенно в не-водиых средах, предлагают насыщать газ парами растворителя (до введения газа в ячейку). Инертный газ (азот или аргон) выпускается промышленностью достаточно чистым, но в случае необходимости азот можно очистить пропусканием его через трубку с медным катализатором (выпускается промышленностью) Предварительно азот очищают, пропуская через растворы солей хрома(И) или ва1аадия(П) или через раствор Фи-зера [3] [c.230]

    Определение легких газов, таких как водород, кислород, азот, диоксид углерода, монооксид углерода, аргон и водяной пар, может вьтолняться с помощью масс-спектрометрии. Учитывая чувствительность масс-спектрометров при определении этих газов, масс-спектрометрию для промышленного контроля обычно применяют в процессах ферментации [16.4-34], для контроля топочных газов в сталелитейном производстве [16.4-35]. Другим основным применением промышленной масс-спектрометрии является мониторинг окружающей среды и атмосферы [16.4-36-16.4-38]. Масс-спектрометры также часто используются для определения различных углеводородов. При анализе сложных смесей этих веществ наблюдаются значительные перекрьтания линий в масс-спектрах, поэтому необходимо использование специальных методов обработки спектральной информации. Кроме того, масс-спектрометры применяются для обнаружения течей в заводских вакуумных системах [16.4-39]. [c.662]

    Адсорбционные и разделительные свойства низко-обгарных адсорбентов оценивают по величине удельных удерживаемых объемов низкокипящих газов и по смесям воздух—СОг и воздух— Хе при 25 и 15 °С (табл. 10.20). Все образцы по удерживающей способности аргона, кислорода и оксида углерода значительно превосходят промышленный уголь АГ-2. Малообгар-ные образцы не проявляют четко выраженных молекулярно-ситовых свойств по кислороду и аргону, имеющих различный размер молекул и близвсую поляризуемость вследствие одинаковой доступности микропор для этих газов. Однако все образцы показывают высокую сорбционную емкость по диоксиду углерода и ксенону при 25 и даже 150 °С. При этом образец КС по поглощению диоксида углерода при 25 °С значительно превосходит толь АГ-2. [c.592]

    При изучении фазовых равновесий в среде сжиженных газов и при количественных анализах ИК-спектроскопия обнаруживает ряд преимуществ по сравнению с другими методами физико-химических исследований. Во-первых, спектроскопия дает возможность непосредственно в растворе обнаруживать присутствие как растворенного вещества, так и его кристаллической фазы, поскольку спектры веществ в различных фазовых состояниях, как правило, сильно отличаются друг от друга. Во-вторых, спектроскопический метод позволяет одновременно регистрировать большое число индивидуальных примесей, т. е. обладает избирательностью. В-третьих, высокая чувствительность метода, которая практически ограничивается только прозрачностью растворителя, позволяет обнаруживать весьма малые концентращш растворенного вещества (порядка 10 мол. дол). Все эти соображения свидетельствуют о перспективности применения ИК-спектроскопии в физико-химических исследованиях низкотемпературных систем и в задачах, представляющих интерес для промышленной криогеники. В настоящей статье обобщаются результаты исследований спектров растворов различных соединений, многие из которых встречаются в виде примесей к техническим сжиженным газам — кислороду, аргону, азоту. [c.82]


Смотреть страницы где упоминается термин Аргон в промышленных газах: [c.98]    [c.268]    [c.46]    [c.505]    [c.37]    [c.62]    [c.61]    [c.95]    [c.940]    [c.543]    [c.175]    [c.333]    [c.53]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон

ПРОМЫШЛЕННЫХ ГАЗОВ



© 2025 chem21.info Реклама на сайте