Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды, образование получение ацетилена при

    При абсорбции окпси углерода жидким азотом одновременно поглощаются и такие высококипящие компоненты конвертированного газа, как кислород и аргон, а также удаляются метан, этилен, ацетилен и другие углеводороды, образование которых неизбежно нри паро-кислородной конверсии газообразных и газификации жидких углеводородов. Возможность получения таким путем азото-водородной смеси, практически не содержащей каталитических ядов и инертных (в реакции синтеза аммиака) примесей, является большим преимуществом низкотемпературного метода очистки конвертированного газа от остаточных количеств окиси углерода. [c.317]


    Поведение к-бутана и изобутана аналогично реакциям пропана в том смысле, что они слишком быстро дают вторичные и третичные продукты реакции, чтобы можно было изучать начальную стадию разложения. Это имеет место при всех температурах свыше 1000° С, т. е. в тех случаях, когда ацетилен является основным продуктом. Отношение К/К для реакций образования ацетилена из пропилена или этилена примерно то же, что и при пиролизе пропана это указывает на то, что природа исходного реагента не имеет особенно большого влияния на скорость образования ацетилена, если исходный реагент является углеводородом, содержащим 3 или более атома углерода. В связи с этим получение ацетилена пз пропана и бутанов будет рассматриваться скорее с точки зрения выхода ацетилена, чем расхода исходного сырья. [c.63]

    При осуществлении процесса превращения углеводородных газов в ацетилен нужно, однако, учесть следующее. Во-первых, выше 1200° все газовые реакции протекают очень быстро. Поэтому, чтобы предотвратить распад ацетилена на элементы, продолжительность пребывания газов в зоне реакции следует свести к минимуму. Во-вторых, поскольку ниже 1200° стабильность ацетилена уменьшается, а стабильность других углеводородов растет, то, чтобы помешать разложению ацетилена и его реакциям с другими газами, выходящие из реактора продукты необходимо очень быстро охлаждать (подвергать закалке). Следует отметить, что получение ацетилена пиролизом парафинов сопровождается также увеличением объема вследствие образования водорода, а поэтому проведение процесса под низким давлением или в присутствии разбавителей должно давать известные преимущества. [c.272]

    Реакция сильно эндотермична и технические методы получения ацетилена различаются по способам подвода тепла, например посредством вольтовой дуги, путем сжигания части метана непосредственно в реакционном пространстве и др. Аналогичным путем, но при несколько более низких температурах, ацетилен может быть получен из высших углеводородов—пропана, бутана пл(г легких нефтяных погонов. Реакция получения ацетилена нз углеводородов протекает сложно и сопровождается образованием большого количества побочных продуктов—этилена, углерода в виде сажи, гомологов ацетилена. Разработанные методы разделения газовой смеси на отдельные компоненты с последующей тщательной очисткой позволяют выделить ацетилен в достаточно чистом виде. [c.94]


    Поскольку в качестве исходного сырья могут применяться углеводороды выше метана, соответствующим регулированием условий процесса можно получать одновременно ацетилен и этилен. При процессах частичного сгорания, когда в качестве сырья обы гно применяют метан, этот метод оказывается неэкономичным. Получение этилена в качестве побочного продукта повышает степень использования энергии сгорания, так как образование этилена снижает низшую предельную температуру крекинга. [c.241]

    При получении олефинов пиролизом углеводородов наряду с этиленом и пропиленом образуются в сравнительно небольших количествах (менее 2%) и высоконенасыщенные соединения, в основном ацетилен и его гомологи [4П. Наличие этих соеди-нений в пирогазе и в получаемых впоследствии его фракциях отрицательно сказывается на показателях процессов переработки олефинов снижается выход продуктов (процесс полимеризации), отравляются катализаторы (карбонилирование, гидратация и алкилирование), ухудшаются условия и безопасность эксплуатации установок из-за образования купренов. Исходя из этого, в настоящее время к чистоте олефинов предъявляются повышенные требования. [c.43]

    Очистку сырого газа, полученного при высокотемпературном крекинге нефти с водяным паром, от ацетиленов и диенов ведут в присутствии сульфидных никелевых, а также никель-кобальт-хромовых контактов при 120—300° С и 3—30 бар, скорости подачи газа 300—1000 При работе катализатора на его поверхности происходит отложение полимерных образований, что снижает активность. Для очистки контакта от полимеров проводят регенерацию его водяным паром и воздухом (или воздухом и азотом). Для очистки непредельных газообразных углеводородов от циклопентадиена, стирола, индена и прочих примесей применяются нанесенные никелевые катализаторы. [c.67]

    В области рабочих температур существующих установок, т. е. выше 1500° С, равновесными продуктами реакции пиролиза метана или другого парафинового углеводорода обычно являются углерод и водород. Практически они являются основными продуктами реакции, если время ее достаточно для достижения равновесия. Однако относительные скорости реакций I и II прй данных температурах таковы, что до достижения равновесия в реакционной смеси имеется в заметной концентрации ацетилен и соответствующее небольшое количество свободного углерода. В реальном процессе получения ацетилена необходимо быстро нагревать парафиновое сырье до высокой температуры, а полученную реакционную смесь быстро охлаждать, чтобы сохранить образовавшийся ацетилен и свести к минимуму образование сажи. Изучение влияния температуры, времени контакта и давления реакции на различное парафиновое сырье и различные разбавители составляет значительную часть указанных выше исследовательских работ, выполненных в течение 1920—1930 гг. Ценная сводка исследований в этой области, выполненных до 1937 г., приведена в обзоре [18]. [c.161]

    Для получения ацетилена из более насыщенного сырья, например природного газа, пропана или газойля, необходимо затратить большие количества энергии. Это видно из рис. 1, па котором показана теплота образования ряда углеводородов, имеющих важное значение как потенциальное сырье для производства ацетилена. Приведенные на рис. 1 величины фактически представляют частное от деления теплоты образования на число углеродных атомов в исходных углеводородах. Энергию, требуемую для превращения любого из рассматриваемых углеводородов в ацетилен при любых значениях температуры в пределах, охваченных этими данными, можно найти как удвоенную разность энергий образования ацетилена и [c.234]

    Получение ацетилена из углеводородов при помощи термических процессов возможно вследствие благоприятных кинетических соотношений При достаточно быстром нагреве исходного углеводорода можно достигнуть преобладания образования ацетилена над разложением углеводородного сырья на углерод и водород. Образующийся ацетилен можно охлаждать достаточно быстро (закалочное охлаждение), чтобы предотвратить его дальнейшее разложение на углерод и водород. Кроме того, оказалось, что при условиях, требуемых для экономичного производства ацетилена, образуются лишь небольшие количества побочных продуктов. [c.235]

    В последние годы в промышленности широко применяется получение ацетилена нри неполном горении метана в кислороде. По технико-экономическим показателям этот процесс является одним из наиболее эффективных процессов получения ацетилена из метана. В Советском Союзе он внедряется на ряде заводов на основе переработки природного газа и последующего использования отходящих газов Для производства аммиака и метанола. Образующийся при неполном окислении метана в кислороде ацетилен является термодинамически неустойчивым он легко разлагается на углерод и водород, а также взаимодействует с углекислотой и водяным паром с образованием окиси углерода и водорода. Схема процесса приводится на рис. V. 2. Сырье (природный газ или метан), не содержащее окиси углерода, водорода и высших углеводородов (так как в противном случае оно преждевременно воспламенится), поступает через подогреватель 1, где нагревается до 600° С, в верхнюю часть реактора 3 (в смесительную камеру горелки), куда подается также подогретый до той же температуры кислород в количестве до 65 объемн. % от метана. В результате процесса горения температура в реакторе 3 поднимается до 1500° С продукты реакции охлаждаются до 80° С орошением водой. [c.148]


    Образование ацетиленидов. Ацетилен и однозамещенные ацетиленовые углеводороды образуют ацетилениды. Для их получения наиболее применимы аммиачный раствор полухлористой меди [c.231]

    Образование ацетиленидов. Ацетилен и однозамещенные аиеги-леновые углеводороды образуют ацетилениды. Для их получения наиболее применимы аммиачный раствор хлорида меди(1) Си(ЫНа)2С1 и реактив Несслера (К)Н 14 в щелочном растворе)  [c.251]

    Опыты П. Сабатье и его сотрудника Сандэрана возбуждают заслуженное внимание и представляют наиболее интересный пример неорганического синтеза нефти. Смесь непредельного углеводорода, с водородом подвергается (в присутствии катализатора — никеля) нагреванию нри температуре не свыше 180°. Происходит процесс гидрогенизации ненасыщенных углеводородов. В результате получается светло-желтая жидкость удельного веса 0,790, состоящая из предельных углеводородов и напоминающая по своим свойствам пенсильванскую нефть. При несколько измененных условиях опыта получаются и другие результаты так, если пропускать ацетилен без водорода над никелем при температуре 200°С, получается вещество, богатое ароматическими углеводородами. При вторичном пропускании этого последнего над никелем получается смесь нафтенов, т. е. нефть типа бакинской. Здесь, очевидно, мы имеем процесс полимеризации и образования под влиянием катализаторов циклических соединений. Вертело доказал, что полимеризация ацетилена (С2Н2) дает бензол (СаНе) при температуре размягчения стекла. Далее в литературе встречаются указания, что углеводороды могут получаться и при других реакциях. Например, еще в 1863 г. была известна возможность непосредственного получения ацетилена при пропускании водорода между угольными концами вольтовой дуги, но тогда на это не обратили должного внимания. Еще Вертело указал, что щелочные металлы, реагируя с СО2, образуют карбиды, или ацетиды и кислород, который потом уходит из сферы реа- [c.302]

    Из способов получения метана особенный теоретический интерес представляет образование его непосредственно из элементов. Так, по Боне и Иердану, этот углеводород получается из углерода и водорода при температуре около 1200°, а также наряду с ацетиленом и небольшим количеством этана в пламени электрической дуги в атмосфере водорода между угольными электродами выход 1,25% СНл .. Примснские повышенного давленья водорода оказывает благоприятное [c.30]

    Другим типом перехода от кислородсодержащего гетероцикла к углеводороду явилось взаимодействие фуранидина с ацетиленом в присутствии А12О3 с образованием циклогексадиена-1,3 [1, 2]. Основным же направлением получения углеводородов из кислородсодержащих гетероциклов является каталитическая дегидратация полных гидридов фурана и его гомологов. Как известно, каталитическая дегидратация самого фуранидина в присутствии фосфата алюминия стала промышленным способом получения дивинила. [c.180]

    Прямой метод получения ацетилена из углеводородного сырья был открыт еще в начале 1862 г. Вертело [1], который получил ацетилен действием электрических разрядов на метан. В 1866 г. Маклеод [2 ] демонстрировал опыт образования ацетилена при сжигании струи кислорода в атмосфере метана, а в следующем году Рит [3] показал, что ацетилен образуется в пламени бунзеновской горелки, когда горение происходит внутри трубки (у дна горелки). В 1880 г. Юнгфлейш [4] описал лабораторную установку для получения ацетилена путем неполного сжигания метансодержащего газа. В этой установке ацетилен поглощался из сжигаемого газа аммиачным раствором меди, а затем регенерировался разложением ацетиленида меди кислотой. Другие исследователи впоследствии наблюдали образование ацетилена среди продуктов высокотемпературного пиролиза метана и других углеводородов. [c.159]

    Основные научные работы посвящены развитию органического синтеза. Получил (1873) дифенил и некоторые его производные. Исследовал (1875) условия превращения бромистого винила в ацетилен. Открыл (1881) реакцию каталитической гидратации ацетиленовых углеводородов с образованием карбонилсодержащих соединений, в частности превращения ацетилена в уксусный альдегид в присутствии солей ртути (реакция Кучеро-ва). Метод этот положен в основу промышленного получения уксусного альдегида и уксусной кислоты. Показал (1909), что гидратацию ацетиленовых углеводородов можно проводить также в присутствии солей магния, цинка, кадмия. [c.278]

    Все предложенные схемы механизма реакции ароматизации при пиролизе можно для упрощения свести к трем. Старейшая теория образования ароматики, высказанная еще Бертло, предполагает, что промежуточным продуктом является ацетилен. Бертло считал, что при получении ароматических углеводородов даже из этилена в качестве промежуточной стадии обязательно образуется ацетилен [c.18]

    Вопе и oward утверждают также, что ацетилен при сравнительно низких температурах проявляет сильное стремление к полимеризации в бензол в тех случаях, когда ацетилен является главным первичным продуктом разложения другого углеводорода (например, этилена), всегда имеет место вторичное образование ароматических углеводородов при относительно низких температурах. Отсюда понятно, что ацетилен может рассматриваться, как промежуточный про-дукт для получения ароматических углеводородов посредством пиролиза. [c.80]

    При изучении термических реакций углеводородов необходимо считаться с процессом пиролиза ацетилена — особенно в связи с тем значением, которое приписывалось ему многими исследователями как промежуточному продукту при этих реакциях. В частности Berthelot считал ацетилен основным источником для всех синтетических процессов, имеющих место при процессах пиролиза. Огромное значение, которое приписывали ацетилену в образовании более крупных молекул, до некоторой степени упало в результате дальнейших исследований, указавших на важную роль в этом процессе олефинов и диолефинов. Тем не менее, ацетилен следует, повидимому, в. некоторых случаях рассматривать, как исходное вещество для получения ароматических углеводородов, образующихся во время пиролизе., особенно при разложении метана при весьма высоких температурах. Изучение реакций ацетилена представляет большой интерес также в связи, с тем, что при очень высоких температурах он стабильнее, чем какой-либо из других летучих углеводородов. Термодинамические расчеты показывают, что ниже 850° ацетилен вообще не может образоваться при пиролизе каких бы то ни было углеводородов. [c.96]

    Если метан пропускать с большой объемной скоростью над катализатором из угля при 700—1000°, то образуются непредельные углеводороды, главным образом этилен и ацетилен . Активным катализатором, ускоряющим эту реакцию, является блестящий рафитоподобный уголь, получаемый при пиролитическом разложении углеводо]>одов в паровой фазе в контакте с кусочками глины или другого огнеупорного материала. Для получения таким путем непредельных углеводородов могут прим( няться не только метан, но и его гомологи, причем разбавление реагирующих газов водородом препятствует образованию угля. [c.154]

    Естественный газ или газы, полученные в результате процессов гидрогенизации, сперва в результате пиролиза могут быть хотя бы частично превращены в жидкие углеводороды, которые удаляются, а газообразный остаток, как таковой или в смеси с другими газообразными углеводородами, подвергают крекингу в вольтовой дуге с целью получения ацетилена . Wulff получал ацетилен нагреванием естественного или промышленного газа до 815° с последующим быстрым охлаждением продуктов реакции. Для того чтобы достичь высокой температуры, необходимой для образования ацетилена из метана, Wulff нагревал газ, пропуская его между кусками пористого огнеупорного материала, который [c.169]

    Тетрагидрофурановые растворы производных диалкил- и ди-арилникеля (II) сравнительно нестабильны, если не поддерживать низкой температуры. Однако эти металлоорганические соединения способны циклизовать ацетиленовые углеводороды, хотя несколько иначе, чем хроморганические соединения [125]. Димезитилникель, например, конденсирует дифенилацетилен с образованием гексафенилбензола и не поддающегося дальнейшей переработке полимерного вещества, близкого по своему составу к тетрамерной форме дифенилацетилена, содержащей один атом никеля. Определяющее влияние соотношения реагентов на соотношение продуктов в этом случае также указывает на наличие весьма реакционноспособного промежуточного продукта, подобного тому, который предполагается при конденсации ацетиленов на хроме. Так, когда полученный из 1 моля бромистого никеля и 2 молей гриньяровского реагента в тетрагидрофуране [c.477]

    Таким образом, при проведении реакций магнийорганических соединений с р-галоидалкенилами и галоидными алкилпропаргилами с целью получения индивидуальных углеводородов необходимо всегда считаться с возможностью аллильной и ацетилен-алленовой перегруппировок, приводящих к образованию смеси продуктов. [c.369]

    Группа исследователей [25] изучала пиролиз углеводородов в простой ударной трубе. Было установлено, что реакционная смесь в достаточной степени охлаждается под действием волны разрежения, распространяющейся в ней после пересечения контактной поверхности отраженной ударной волной. Для проверки предложенного Портером механизма образования углерода (см. дальше), входившей в задачи исследования, пиролиз метана проводили при 1800 и 2400 °К. Продукты реакции содержали этан, этилен, ацетилен, диацетилен, бутадиен, аллен, бутены и бутан. На основании полученных данных авторы пришли к выводу, что с повышением температуры протекает ступенчатая реакция метан этан этилен ацетилен. [c.312]


Смотреть страницы где упоминается термин Углеводороды, образование получение ацетилена при: [c.190]    [c.734]    [c.91]    [c.714]    [c.455]    [c.186]    [c.455]    [c.289]    [c.27]    [c.53]    [c.56]    [c.138]    [c.187]    [c.245]    [c.284]    [c.725]    [c.389]    [c.122]    [c.305]   
Химия ацетилена (1947) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен получение

Образование углеводородов

Углеводороды, образование получение ацетилена неполным сгоранием

Углеводороды, образование получение ацетилена погру

Углеводороды, образование получение ацетилена погруженным пламенем



© 2025 chem21.info Реклама на сайте