Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь электронной парой и валентность

    Конечно, тут открывается большой простор для фантазии теоретика (деформируй отдельные электронные облака атомов молекулы так, или почти так, как хочешь, благо математика это позволяет ). Можно сосредоточить (локализовать) электронную плотность частично на атомах (в виде электронных пар внутренних оболочек атомов или неподеленных электронных пар валентной оболочки), а частично на химических связях (локализация электронов в поле двух ядер отвечает двухцентровому взаимодействию атом — атом, которое описывается классической символикой валентного штриха), а можно пользоваться и делокализованными орбиталями, охватывающими в принципе все атомные ядра молекулы. Разумный теоретик стремится воспользоваться этой свободой для того, чтобы построить модель, приемлемую для химика и пригодную для описания данного класса свойств. [c.210]


    Структурные формулы служат для более наглядного изображения химического соединения. При таком изображении символы элементов соединены черточками, изображающими связующие электронные пары. Количество черточек у каждого элемента равно его валентности в данном соединении [c.28]

    С галогенами бор также реагирует при нагревании и образует вещества общей формулы ВГ3. В этих соединениях бор образует с галогенами плоские молекулы с углами между связями Г-В-Г, равными 120°. Такая геометрия молекул ожидается при рассмотрении отталкивания электронных пар валентной оболочки (см. разд. 4.5.5) и на основании -гибридизации орбиталей бора (см. разд. 4.5.6). [c.396]

    Такой тетраэдрической направленности всех четырех одинаковых (по прочности и длине) ковалентных сг-связей атома углерода с другими атомами отвечает sp -гибридизация его валентных орбиталей (см. разд. 4.5.6 и рис. 29.2). Данная геометрия следует и из концепции отталкивания электронных пар валентной оболочки углерода, когда четыре связывающих электронные пары стремятся удалиться, как можно дальше друг от друга (см. разд. 4.5.5). Химическая связь в таких соединениях углерода в значительной мере локализована между парами атомов и двухэлектронна. В этой связи предполагается, что коллективные свойства молекулы, т. е. свойства, определяемые движением сразу всех электронов, будут аддитивными. Экспериментальные данные во многих случаях подтверждают это. В молекулах с тетраэдрическими связями атомов углерода длины химических связей и их прочность для одной и гой же пары атомов приблизительно постоянны. [c.552]

    Итак, в органических соединениях связь между атомами, как правило, осуществляется парами электронов. Число химических связей (электронных пар), которыми данный атом соединен с другими атомами, называется его валентностью. [c.29]

    При рассмотрении геометрического строения молекулы наиболее важным фактором являются углы между связями. Теория валентной связи гибридизованных орбиталей дает удовлетворительные величины многих из наблюдаемых углов между связями особенно тогда, когда можно сделать определенный выбор участвующих в связи орбиталей. Однако эта теория не всегда дает объяснения наблюдаемым углам. Когда же предсказываемые углы между связями отличаются от экспериментально найденных, то обычно применяют довольно искусственный прием определения степени гибридизации, т, е. относительного вклада в гибридизацию 5-, р- и -составляющих связи . Ниже будет показано, что этим было, по крайней мере, положено начало лучшему пониманию и объяснению различия углов между связями которое наблюдается во многих формально аналогичных молекулах, И модель, которая будет использована, по-прежнему базируется, в основном, п пространственной корреляции электронных пар валентного уровня, возникающей из принципа запрета Паули, [c.223]


    К наиболее распространенным методам квантовой химии относятся метод валентных связей (электронных пар) и метод молекулярных орбиталей (МО). Конечная цель обоих методов — нахождение энергии и получение из одноэлектронных атомных волновых функций приближенных волновых функций молекул. Значения Е vl Ч должны быть такими, чтобы после подстановки уравнение Шредингера превращалось в тождество. Эти методы в ходе математических расчетов широко опираются на данные физико-химических исследований свойств молекул. [c.21]

    Кроме модели отталкивания электронных пар валентных орбиталей вопросы стереохимии молекул успешно решаются в рамках теории связи на основе представлений о гибридизации атомных орбиталей. Важнейшие типы гибридных орбиталей и соответствующие им конфигурации молекулярных частиц приведены в табл. 18. [c.114]

    Очевидно, что при соединении друг с другом двух одинаковых атомов одностороннее перетягивание осуществляющей валентную связь электронной пары происходить не будет. Она окажется, следовательно, в равной мере принадлежащей обоим атомам. Орбиты входящих в [c.89]

    Наконец, возможен такой случай, когда оба соединяющихся атома отличаются друг от друга по химическому характеру, но не столь резко противоположны, как фтор и натрий. Примером может служить соединение фтора с водородом, металлические свойства которого выражены несравненно слабее, чем у натрия. Ввиду этого осуществляющая валентную связь электронная пара далеко не так сильно оттянется к фтору (т. е. более металлоидному элементу), как при взаимодействии последнего с натрием. Данный случай будет, следовательно, промежуточным между двумя рассмотренными выше, как это видно из рис. П1-35. [c.89]

    Из ЭТИХ схем видно, что оба процесса различаются происхождением связующей электронной пары, но сами образующиеся в конечном счете связи однотипны (и имеют более или менее четко выраженный ковалентный характер). Поэтому по смыслу рассматриваемых представлений такая координативная валентность не отличается от классической (1П 5). Однако простое суммирование их значений под названием валентность легко может повести к недоразумениям (например, при оценке степеней окисления). Правильнее такую сумму называть дентатностью центрального атома. [c.410]

    Основы метода валентных связей (электронных пар) [c.48]

    На построение осуществляющей валентную связь электронной пары идет по одному электрону от каждого из соединяющихся атомов. Поэтому валентность элемента в том или ином соединении определяется числом электронов его атома, участвующих в образовании таких электронных пар. Вместе с тем максимально возможная валентность элемента равняется общему числу имеющихся в его атоме непарных (или непрочно спаренных) электронов. Число это, как правило, совпадает с номером той группы периодической системы, в которой находится данный элемент. [c.75]

    Первый случай имеет место тогда, когда один из атомов притягивает осуществляющую валентную связь электронную пару гораздо сильнее другого. Очевидно, что в результате полного перетягивания электронной пары первый атом приобретает один электрон, а второй его теряет. Оба атома становятся поэтому электрически заряженными. Такие электрически заряженные частицы, образовавшиеся из атомов (или атомных групп) вследствие потери или присоединения электронов, называются ионами. Так происходит, в частности, образование молекулы NaF, в которой натрий становится после реакции заряженным положительно, а фтор — отрицательно. [c.75]

    При описании молекулы СН4 на основе эквивалентных орбиталей восемь валентных электронов имеют пространственные волновые функции 01—04, определяемые уравнениями (8.20), причем каждой пространственной функции соответствуют электроны со спинами а и р. В широком смысле можно говорить о том, что на каждой эквивалентной орбитали находятся по два электрона, которые называют локализованными на связях электронными парами. [c.179]

    В начале настоящей главы мы расскажем о том, как атомы могут объединяться в молекулы. Рассмотрев различные типы связей, которые существуют в органических соединениях, мы обсудим теорию молекулярных орбиталей и применение этой теории для описания связей в некоторых малых молекулах. Затем мы перейдем к теории отталкивания электронных пар валентной оболочки и к понятию гибридизации, которые помогут нам представить образование связей в более сложных молекулах. Далее мы кратко расскажем о том, как структуры Льюиса используются для представления органических молекул. Часть этого рассказа будет посвящена расчету заряда ( формального заряда ) на атомах в молекулах. Наконец, мы остановимся на очень важной для понимания строения и реакций органических соединений теории резонанса. [c.27]

    Метил-катион (СН ) — высокореакционная частица с дефицитом электронов, в котором имеются три связи вокруг атома углерода. Плоское расположение с углами между связями, равными 120°, позволяет достичь максимального разделения этих электронных пар. Поэтому в соответствии с теорией отталкивания электронных пар валентной оболочки мы можем с уверенностью предсказать, что атом углерода будет 5р -гибридизованным. [c.59]


    Неподеленная пара электронов. Пара валентных электронов, которая не участвует в образовании связи между двумя атомами. В формальдегиде две пары электронов кислорода, которые пе участвуют в образовании связи с углеродом, являются неподеленными [c.71]

    В димерах реализуется делокализованная трехцентровая ст-связь, которая не может быть объяснена с позиций теории локализованных электронных пар (валентных связей), но понятна с позиций теории МО. Аналогично димеризуются галогениды алюминия, несмотря на то, что химические связи А1-С1, А1-Вг не столь активны, как А1-С  [c.582]

    Направленность химических связей. Концепцию гибридизации можно с успехом использовать для определения и предсказания формы молекул, однако в рамках метода ВС существует еще более простой подход - так называемая теория отталкивания электронных пар валентной оболочки. В ее основе лежит исключительно [c.59]

    В методе молекулярных орбиталей молекула рассматривается с той же точки зрения, с какой в гл. 2 рассматривался атом. В методе валентных связей (электронных пар) принимается, что молекула построена из атомов, которые в некоторой степени сохранили свою индивидуальность, несмотря на то, что они участвуют в образовании химической связи. Едва ли можно сомневаться в том, что метод молекулярных орбиталей проще. Исторически он появился уже после того, как был разработан метод валентных связей, и поэтому несколько медленнее завоевал признание. В настоящее время метод молекулярных орбиталей применяется наравне с методом валентных связей, в особенности при рассмотрении возбужденных состояний. [c.84]

    В связи с теорией локализованных валентных пар, исходившей из постулата, что химическая связь осуществляется парой валентных электронов со спаренными спинами, была создана теория спин-валентности атомов, пытавшаяся объяснить числа валентности, приписывавшиеся атомам элементов разных групп периодического закона Менделеева. Согласно этой теории, число валентности атома равно числу электронов с одинаковыми по знаку проекциями спинов (т. е. с неспаренными спинами) в его электронной оболочке. [c.37]

    Но оказывается, что связующие электронные пары (дублеты) не равноценны одна из них менее прочная и в ходе химических реакции легко распадается. При этом у каждого атома углерода освобождается по одной валентности и по ним присоединяются различные атомы или группировки атомов. Поэтому для этилена и других олефинов характерны реакции присоединения. Вновь образовавшиеся соединения содержат более прочные простые связи. [c.39]

    Октетные формулы. Поскольку каждая ковалентная связь образована парой валентных электронов, зная число электронов во внешней оболочке атома, для любого органического соединения легко написать электронную октетную формулу. В этих формулах учитываются только внешние валентные электроны атомов, как образующие, так и не образующие химические связи  [c.23]

    Изобразим ту же самую реакцию, отображая валентные связи электронными парами  [c.111]

    Как было установлено, при образовании ковалентной связи электронные пары располагаются симметрично относительнв ядер связывающих атомов и атомы в молекулах никаких зарядов не несут. При образовании ионных связей валентные электроны полностью переходят от менее электроотрицательных к более электроотрицательным атомам, в результате чего образуются ионы, заряд которых определяется количеством отданных или присоединенных электронов. В молекулах с полярными связями валентные электроны лишь частично смещаются к более электроотрицательному атому, при этом на взаимодействующих атомах также возникают электрические заряды, но их величины не являются целочисленными. Например, в молекуле НС на водороде существует положительный, а на хлоре отрицательный заряды, но кх величины меньше единицы. [c.87]

    Основы новой теории были заложены в 1940 г., когда Сиджвик п Пауэлл сделали обзор стереохимии известных тогда неорганических соединений и заключили, что пространственное распределение связей для многовалентных атомов непосредственно связано с общим числом электронов валентного электронного уровня. Они предположили, что электронные пары, находящиеся в валентном уровне многовалентного атома, расположены всегда так, что отталкивание между ними минимально, независимо от того, являются ли они поделенными (связывающими) парами или неподе-ленными (несвязывающими или свободными) парами. В соответствии с этим предположением две пары будут располагаться линейно, три — в плоском треугольнике, четыре — тетраэдрически, пять — в виде тригональной бипирамиды и, наконец, шесть пар — октаэдрически. Оказалось, что указанные конфигурации, объясненные таким простым способом, правильно предсказывают формы молекул во всех известных соединениях непереходных элементов, для которых все электронные пары валентного уровня соединены с идентичными атомами или группами. Если одна или более электронных пар не поделены пли если имеется два или более разных видов присоединенных атомов, то следует ожидать отклонений т геометрически правильных структур. [c.198]

    Валентность. Окислительное число. Валентность — это мера способности атома элемента к образованию химических связей с атомами других или того же самого элемента. Так, хлор в НС1 одновалентен, кислород в HjO двухвалентен и т. д. В пособиях по химии не всегда однозначно указываются валентные числа атомов элементов из-за трудности всей проблемы химической связи в целом. В настоящем посрбии авторы пользуются как понятием валентность , так и окислительное число . Под валентностью элемента подразумевается число одиночных электронов, которые атом выделил для образования химических связей. Азот в NH, трехвалентен, но в HNO3 не пятивалентен, так как атом азота не имеет пяти одиночных электронов (см. стр. 213). В молекуле Nj азот трехвалентен (а не нульвалентен), так как каждый из атомов азота выделил по три электрона для создания трех связующих электронных пар. Углерод во всех < лучаях четырехвалентен, кислород двухвалентен. Для интерметаллических соединений обычное понятие валентности неприменимо и этот вопрос в практикуме не рассматривается. Валентность указывается без знака плюс или минус. [c.68]

    Первый случай имеет место тог а, когда один из атомов притягивает осуществляющую валентную связь электронную пару гораздо сильнее другого. Очевидно, что в результате полного перетягивачия электронной пары первый атом приобретает один электрон, а второй егр теряет. Оба атома становятся поэтому электрически заряженными. Такие электрически заряженные частицы, образовавшиеся из атомов (или атомных групп) вследствие пот рв [c.87]

    Важнейшие свойства К. с.— насыщаемость (существование нек-рого предельного числа двухцентровых двухэлектронных связей, образуемых атомом) и направленность, к-рая определяет пртстранств. строение молекул, ионов, радикалов и стереохим. результаты р-ций соединений с К. с. Причины направленности К. с. раскрываются квантовой химией, а осн. принципы хорошо описываются с использованием представлезий о гибридизации атомных орбиталей и теории отталкивания электронных пар валентных орбита-лей. Применение методов и представлений квантовой химии к описанию К. с. привело к значит, обогащению и расширению этого понятия по сравнению с его традиц. содержанием (двухцентровая двухэлектронная связь), в частности к вве-децшо таких понятий, как многоцентровые К. с. (см. Многоцентровая связь), сопряжение связей, координационная связь. в. И. Минкин. [c.264]

    Степени окисления молекулах. Для определения степени окисления влементов в соединениях, построенных из молекул, необходимо мысленно раз делить молекулу на одноатомные ионы. При этом, учитывая полярность ко-валентных связей (см. 6.7), общие электронные пары следует передать полностью атомам более электроотрицательного элемента, а прн наличии чисто ковалентной связи электронные пары следует разделить пополам между двумя связанными атомами. Таким путем определяют электрический ааряд каждого атома элемента в соединении, т.е. степень окисления элемента. [c.158]

    Антипар аллельная ориентация спинов связующей электронной пары обусловливает насыщение валентных сил. Неспаренные электроны могут участвовать в образовании го-меополярной связи, поэтому число образуемых атомом ковалентных связей (ковалентность атома) равно числу имеющихся в атоме электронов с неспаренными спинами (см, табл. 2.1). [c.414]

    В кристаллах с ковалентной связью, как ясно из самого названия, атомы решетки связаны обычной химической связью, осуществляемой парой валентных электронов, обобществленной между связанными атомами. Сложнее обстоит дело в кристаллах, для которых характерно образование структур с числом связей (определяемым числом ближайших соседей), превышающим число валентных электронов. В стуктурах металлов имеются дробные связи, кратность которых меньше единицы. Валентные электроны в металлическом кристалле полностью обобществлены и могут перемещаться в объеме всего кристалла. [c.21]

    Обменные силы, интенсивно действующие на коротких расстояниях как силы притяжения, которые обусловливают гомеополярнукх связь и для которых характерно появление общей связующей электронной пары. Эти обменные силы определяют расстояние между я рами атомов, валентный угол, собственные колебания, энергию диссоциации и пр. Они приводят к образованию гомеополярных соединений, схематически передаются октетной теорией Льюиса и поддаются математической обработке при помощи волновой механики. [c.15]

    Приведенные классификационные схемы могут быть полу чены чисто умозрительным путем, исходя только из электронных представлений в органической химии (главным образом из того, что ковалентная связь образована парой валентных электронов). Они относятся непосредственно только к элементарным реакциям и правомочность применения любой из этих схем к какой-либо квазиэлементарной реакции должна обсуждаться отдельно для каждого конкретного случая. [c.76]


Смотреть страницы где упоминается термин Связь электронной парой и валентность: [c.469]    [c.339]    [c.147]    [c.369]    [c.369]    [c.135]    [c.264]    [c.571]    [c.135]    [c.232]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.154 , c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Валентные электроны

Связь валентная

Современные экспериментальные данные и гипотезы о паре электронов на химическую связь и о попарном спаривании спинов валентных электронов в химических частицах

Электрон связи

Электронная пара

Электронные пары валентные

Электроны валентные электроны



© 2025 chem21.info Реклама на сайте