Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы этиленгликолем

    Технологическая схема процесса получения окиси этилена, разработанного фирмой S ientifi Design, изображена на рис. 6.24. Воздух, подаваемый компрессором У, смешивается с этиленом и циркулирующим реакционным газом и вводится в низ контактного аппарата 2, в трубки которого загружен катализатор. Температура окисления регулируется скоростью циркуляции теплоносителя. Реакционные газы охлаждаются в теплообменнике, нагревая циркулирующий газ, и в холодильнике, а затем компримируются дожимающим компрессором 3. Далее газ поступает в основной скруббер 4, где окись этилена улавливается водой. Большая часть выходящего газа направляется на смешение с исходной эти-лено-воздушной смесью, меньшая — в дополнительный контактный аппарат 5 для окисления непрореагировавшего этилена, а затем на промывку водой в дополнительный скруббер 6. Отходящий из скруббера газ выбрасывается в атмосферу. Водные растворы из скрубберов 4 и 6 смешиваются и поступают в десорбер 7. Из верхней части десорбера отводят окись этилена, пары воды и Oj. Они компримируются и направляются на двухступенчатую ректификацию. В колонне 9 выделяется этилен, Oj и другие легкокипящие компоненты. С верха колонны 10 отбирают окись этилена. В кубе этой колонны остаются высококипящие примеси (вода, ацетальдегид, этиленгликоль). [c.206]


    Получение этиленгликоля из формальдегида организовано в США фирмой Е. I. du Pont de Nemours and o. По этому способу смесь паров формальдегида и воды (объемное соотношение 1 1) абсорбируется водным раствором гликолевой кислоты (мольное соотношение 1 2) с примесью каталитических количеств серной кислоты и затем пропускается через реактор вместе с избытком окиси углерода при 200 "С и 70 МПа (время контакта 5 мин). В результате образуется гликолевая кислота (выход 90—95%), выделяемая перегонкой прн пониженном давлении. После этерификации гликолевой кислоты метиловым спиртом и очистки зфира перегонкой, проводится гидрирование метилового эфира гликолевой кислоты при 200 °С и 3 МПа в присутствии катализатора медь—хромат бария. На стадии восстановления получают этиленгликоль с выходом 90%. Данный метод не получил широкого распространения вследствие многостаднйности и высокой коррозионности среды, но может быть перспективным при снижении стоимости и расщирении производства синтез-газа. [c.274]

    Гликоли, как известно, способны с кислотами давать несколько типов эфиров—неполные, полные и смешанные эфиры (неполные простые эфиры называются целлозольвы). Реакции образования этих веществ протекают в присутствии кислых катализаторов при нагревании. Технически важны моно- и диацетат этиленгликоля, которые применяют для растворения ацетилцеллюлозы при изготовлении специальных лаков. Целлозольвы образуются и при взаимодействии простых моноэфиров гликоля с кислотами  [c.470]

    Температура реакции, как известно, определяет скорость процесса и влияет на длительность работы катализатора. При гидрировании ксилозы на никелевом катализаторе при 120—130 °С образуется в основном ксилит, при температуре 210—240 °С протекает гидрогенолиз ксилита с образованием глицерина и этиленгликоля. При повышении температуры от 30 до 70 °С продолжительность гидрирования ксилозы при равном выходе ксилита уменьшается от 24 до 7—8 ч [10]. [c.154]

    Этиленгликоль получается преимущественно прямым каталитическим окислением этилена в этиленоксид с последующей ее гидратацией. Этиленоксид может быть превращен в гликоль каталитической или екаталитической гидратацией. В каталитическом процессе требуется большой избыток разбавленных водных кислот, обычно серной, а в некаталитическом — избыток воды. Реакция каталитического процесса проводится при 180°С и 21,5-105 11а, а некаталитичеокого процесса — при 95 °С и (15—20)-10 Па. Побочными продуктами реакции являются ди- и триэтиленгликоли, составляющие соответственно 9% и 1% (масс.). При этом выходы этих гликолей могут быть повышены увеличением температуры и небольшим понижением давления в реакторе. Небольшие количества полиэтиленглико-лей образуются также при обычных условиях, но выход их может быть увеличен при использовании в качестве катализатора аОН. Для разделения и очистки гликолей проводят дегидратацию реакционной смеси с последующей вакуумной перегонкой. [c.272]


    В реактор 1. нагретый до 140 °С, загружают диметилтерефталат (ДМТ). Отдельно в аппарате 2 готовят раствор катализатора в этиленгликоле. Для этого этилен гликоль нагревают до 125 °С и при перемешивании вводят в него катализатор (ацетат цинка). Раствор катализатора в этиленгликоле также подают в реактор/. [c.74]

    Дегидратация гликолей. Особый интерес представляют реакции межмолекулярной дегидратации (стр. 109) этиленгликоля, протекающие различно в зависимости от условий (температура, катализатор). Из двух молекул этиленгликоля с отнятием молекулы воды образуется диэтиленгликоль, представляющий собой простой эфир (стр. 127), [c.122]

    Реакцию (I) проводят при 250—280"С и 1,2—1,5 МПа с участием Ад-катализатора. Этиленгликоль используют в качестве антифриза (жидкости для охлаждения двигателей внутреннего сгорания), тормозной жидкости, в производстве пластмасс, полиэфирного волокна и взрывчатых веществ. [c.478]

    При гидрогенолизе сорбита с никель-медным катализатором на окиси магния без добавления крекирующего агента, при давлении 2—3 МПа и температуре 210—220 °С в течение длительного времени (5—10 ч) степень превращения сорбита составила 79—84% [30]. Среди продуктов реакции найдены главным образом глико-ли 1,2-пропиленгликоль 27—32%, 1,3-пропиленгликоль 20—30%, этиленгликоль 10—19% содержание глицерина лишь 15—19%. [c.113]

    Принципиальная технологическая схема процесса приведена на рис. 8.14. Окись этилена, водный раствор катализатора и двуокись углерода поступают в трубчатый реактор 4. Теплосъем осуществляется холодным сырьем и водой, циркулирующей в межтрубном пространстве реактора. Верхняя часть реактора служит сепаратором высокого давления. Гидролизат после реактора направляется в испаритель 6 для отделения от катализаторов, основная часть которых ( 90%) возвращается на синтез. Из смеси этиленгликолей, содержащей 5—10% воды, вакуумной ректификацией выделяют на колонне 8 этиленгликоль, а на колонне 9 диэтиленгликоль. [c.277]

    Этот метод, разработанный фирмой Карбайд энд карбон кемикл корпорейшн , заключается в следующем. Этиленгликоль подвергают парофазному окислению избытком воздуха при 250—300° над медным катализатором [28]. Чтобы подавить дальнейшее окисление глиоксаля, к парогазовой смеси прибавляют следы галоидного соединения, например хлористого водорода. Этот прием напоминает прибавление дихлорэтана к этилену при парофазном окислении последнего в окись этилена (гл. 9, стр. 159). Максимальный выход достигает 50%. [c.309]

    Опубликованы подробности метода гидратации окиси этилена под давлением в отсутствие катализаторов [3, 4]. Смесь 1 объема окиси этилена и 6 объемов воды выдерживают в течение 30 мин. при 190—200° и 22 ата. Водный раствор гликолей после доведения pH до 7 упаривают в трехкорпусном выпарном аппарате. Отгоняющиеся сладкие воды , в которых содержится 0,5—1% этиленгликоля, возвращают в аппарат для гидратации окиси. Упаренную смесь гликолей, содержащую 15% воды, разгоняют на нескольких ректификационных колоннах. На каждые 35 весовых частей этиленгликоля получают 4 части диэтиленгликоля и 1 часть триэтиленгликоля [3]. Выход гликолей из окиси этилена превышает 90%. [c.354]

    В данном случае также получаются побочные продукты — триэтиленгликоль и высшие полигликоли. По одному из методов [3] 1 объем окиси этилена растворяют в 6 объемах 50%-ного водного раствора этиленгликоля и нагревают при 200° и 14 ата в отсутствие катализаторов. [c.356]

    Как и в случае гидратации окиси этилена в гликоли, реакция спирта с окисью этилена может протекать и в присутствии кислотных катализаторов и в их отсутствие. В Германии на каждый объем окиси этилена брали 5—7 объемов метилового, этилового или н-пропилового спиртов и проводили реакцию при 200—220° и давлении до 45 arm. Скорость этой реакции значительно меньше, чем скорость гидратации окиси этилена в отсутствие катализаторов. Получающиеся смеси простых эфиров содержат около 85% эфиров этиленгликоля, 10% эфиров диэтиленгликоля и 2—3% эфиров триэтиленгликоля общий выход простых эфиров равен 90—95%, считая и на окись этилена и на спирт [14]. [c.359]

    Глиоксаль [24]. Каталитическим окислением этиленгликоля над окисно-медным катализатором при температуре около 270—280 и давлении 3,5 ат в газовой фазе можно гликоль окислить в глиоксаль, получающийся в виде водного раствора глиоксальгидрата. Возможности применения глиоксаля в промышленности многочисленны и разнообразны. Он является исходным материалом для получения ниразин-2,3-дикарбоновой кислоты — витамина, применяемого при лечении пеллагры. [c.189]

    Этиленгликоль ВВОДЯ 1 с большим избытком, что приводит к увеличению выхода полиэфира. В качестве катализатора применяют окись свинца, алкоголят магния или натрия. Температуру реакции доводят до 195°, удаляя метиловый спирт по мере его образования.. Затем повышают температуру до 280° и далее проводят процесс в вакууме (остаточное давление в реакторе менее [c.422]

    Обозначим массу пробы, отобранной в момент времени I, через О. Эта проба содержит как прореагировавшие, так и непрореагировавшие этиленгликоль и адипиновую кислоту, катализатор и воду. Если 2Л/о —общее число молей звеньев адипиновой кислоты и этиленгликоля, введенных в исходную смесь, а 9 —степень превращения, достигнутая к моменту времени I, то уравнение материального баланса для данной пробы будет иметь вид [c.48]


    Формальдегид со, катализатор гликолевая кислота нон алкилглико-лят Нг, катализатор этиленгликоль (с регенерацией ROH) [c.6]

    Этим путем предлагается получать моноакрилат и монометакрилат этиленгликоля, являющиеся ценными мономерами, а также монотерефталат этиленгликоля, который можно непосредственно превращать в полимер поликонденсацией. Наиболее эффективные катализаторы реакций а-оксидов с карбоновыми кислотами — третичные амины, функционирующие в виде солей четырехзамещенного аммония. [c.290]

    Сообщается также о моделях МФК-реакций для систем жидкость/жидкость с использованием в. качестве катализаторов необычных циклических фосфониевых и арсониевых солей [59], а для системы твердая фаза/жидкая фаза — особой октопус-мо-лекулы ( осьминога ) [60], сложных по структуре 88] и простых эфиров этиленгликоля [61], лолиэтиленаминов [62], тетраметил-этилендиамина [63] и замещенных р-аминофосфамидов [64]. [c.79]

    В присутствии кобальт-, марганец-, хром- или родийсодер-жащих катализаторов при 150—400 °С и давлениях выше 150 МПа получен этиленгликоль. [c.327]

    Практически наиболее важный метод промышленного синтеза этиленгликоля состоит в гидратации оксида этилена, обычно проводимой без катализаторов при 170—200 С и 15-кратном избытке поды. Имеются данные об осуществлении этого синтеза в более мягких условиях при катализе фосфорной кислотой. [c.288]

    В качестве примера рассмотрим технологическую схему получения этиленгликоля (рис. 86), которая применима и для синтеза нропиленгликоля. Процесс проводят без катализаторов при 160— 200°С под давлением, обеспечивающим сохранение смеси в жидком состоянии. Исходную шихту готовят из свежего и оборотного водного конденсата и оксида этилена, причем концентрация окси- [c.296]

    Жидкие аммиак и пропиленовую фракцию испаряют в аппаратах 1 п 2 при помощи смеси этиленгликоля (ЭГ) с водой смесь при этом охлаждается до низких температур, а ее холод утилизируется (в том числе для конденсации синильной кислоты). Газо-образпле аммиак, пропиленовая фракция и воздух в ранее рассмотренных соотношениях поступают в реактор 3 с псевдоожи-женны4 слоем катализатора. Реактор охлаждается кипящим водным конденсатом. За счет реакционного тепла генерируется пар высокого давления, который служит для привода воздушного турбокомпрессора, а выходящий из компрессора мятый пар используется на стадии разделения продуктов. Горячие газы по выходе из реактора проходят котел-утилизатор 4, где генерируется пар среднего давления. [c.425]

    Получаемый продукт состоит из 607о диацетата, 35% моноацетата и 5% этиленгликоля с общей селективностью их образования 97%. Катализаторами являются смесь хлоридов палладия и меди, нитрат палладия и особенно ТеОг, промотированный соединениями брома. Сиитез ведут при 160 °С и 2,8 МПа с 60%-ной степенью конверсии этилена и циркуляцией непревращенных газов. Вторая стадия заключается в гидролизе полученной смеси водой при ПО—130°С, когда вырабатывают уксусную кислоту, направляемую на рециркуляцию, и этиленгликоль. При этом суммарный выход этиленгликоля достигает 94% по этилену, что значительно превосходит традиционный способ синтеза. Сообщается о пуске крупных установок производства этиленгликоля по этому методу, но надежных данных по технологии и экономике производства пока нет. [c.454]

    Ацетилен является иримесью, загрязняющей пропан, этан и бутан, которые подвергают крекингу с целью получения этилена для производства полиэтилена или этиленгликоля. Ацетилен мешает протеканию двух последних процессов, п его удаляют каталитически или промывкой. Каталитическое удаление ацетилена гидрированием в этилен представляет собой одни из лучших примеров селективного катализа. Эту реакцию осуществляют в промышленности нри температуре 200—250°С на никелевом катализаторе, сульфидироваппом в строго определенной степени. В силу того что в ходе процесса происходит частичное гидрирование серы и она удаляется с катализатора, в реактор следует постоянно вводить некоторое количество серы для компенсации ее потерь и поддержания определенного уровня селективности катализатора. Гидрирование можно вести при давлениях 200—1000 фупт/дюпм . В качестве катализатора обычно используют никель на оксиде алюминия, содержащий иногда небольшие добавки кобальта и в некоторых случаях хром. Ценность добавок хрома проблематична, так как он повышает устойчивость катализатора к сульфидированию, увеличивает подвижность серы, что ведет к быстрой потере селективности. [c.126]

    Этот вопрос настолько широк, что его можно включить в данную главу только схематически. Одно из направлений взаимодействия СО и водорода, которое привлекло наибольшее внимание,— образование этиленгликоля и других двух- и трехатомных спиртов. Реакция идет при чрезвычайно высоких давлениях на родийорганических комплексных катализаторах. Похоже, что высокие давления являются основным иреиятствием на пути практического освоения процесса. Для снижения требуемых давлений до приемлемого уровня, наиример 1000—5000 фунт/дюйм , была проделана большая работа. Уже появились патенты на осуш,ествление процесса в этом интервале давлений, однако перспективы его иромышлеиного освоения еще неясны. [c.130]

    Фирмой Hal on (США) разработаны аналогичные процессы получения этил-гликоля, отличающиеся использованием в качестве катализаторов TeOj и соединений брома или МпОСОСНз и иодидов. Выход этиленгликоля достигает 95% при степени превращения 60% за проход. [c.194]

    Необходимо отметить, что обратный метод синтеза ПАВ может быть также осуществлен в промышленных масштабах и имеет ряд преимуществ перед 1фя-мым. Так, оксиэтилирование идет в более мягких условиях — при более низких давлениях и температурах синтез может идти в отсутствии катализатора, например, для алкилендиаминов. Одним из основных видов сырья, используемого в этом синтезе, являются жирные кислоты, например, кубовый остаток от дистилляции синтетических жирных кислот, которые имеют широкую и дешевую сырьевую базу и в настоящее время являются недефицитными и недорогими продуктами, Кроме этого, по данному методу могут быть использованы кубовые остатки от вакуумной дистилляции этаноламинов и этиленгликолей, которые в настоящее время не находят квалифицированного применения. [c.147]

    Для извлечения ароматических углеводородов из гидрированных бензинов пиролиза, так же как из катализатов риформинга, наиболее часто применяется экстракция. Широкое распространение получила экстракция смесью Н-метилпирролидона с этиленгликолем (процесс Аросольван ) [102], обеспечивающая в сочетании с последующей ректификацией получение высококачественных товарных ароматических углеводородов. В качестве экстрагентов применяются также гликоли, сульфолан, диметилсульфоксид и другие растворители [124]. При переработке узких гидроочищенных фракций пиролиза, содержащих более 75% одного какого-либо ароматического углеводорода (чаще бензола) применяется экстрактивная ректификация с Ы-метилпирролидоном (процесс Дистапекс ) [125], диметилформамидом [126] или другим растворителем. Двухстадийное гидрирование узкой фракции бензина пиролиза (Сб—Се) с последующей экстракцией гидрогенизата осуществляется и в процессах других фирм. Так, в одном из процессов на первой ступени гидрируются диолефины и стирол на катализаторе из благородного металла (давление 2,7—6,2 МПа, температура 65—218°С), а на второй ступени на алюмокобальтмолибденовом катализаторе гидрируются олефины и удаляются сернистые соединения [127]. [c.186]

    Переэтерификация диметилтерефталата этиленгликолем протекает с количественным выходом в присутствии кислотного катализатора—катионообменной смолы [см. [c.346]

    Наиболее важным методом промышленного синтеза этиленгликоля является гидратация окиси этилена. Процесс проводится без катализаторов при температуре не выше 179 "С и давлении не более 22 атм. Такая установка производительностью 25 тыс. т/год работает в АО "С алаватнефтеоргсинтез ". [c.66]

    Основные производственные мощности переработка нефти и газового конденсата - до 11 млн.тонн в год производство толуола -37 тыс.т/год аммиака - 450 тыс.т/год карбамида - 630 тыс.т/год нормальных и изобутиловых спиртов - 175 тыс.т/год, этиленгликоля - 25 тыс.т/год стирола - 50 тыс.т/год окиси этилена - 50 тыс.т/ од, катализаторов - 12 тъгс. т/год. [c.114]

    Катализаторами процесса отверждения полиэиоксидов поли-аминами служат первичные о,цно- и многоатомные спирты. Так, введение в смесь полиэпоксида и пиперидина 4,65% этиленгликоля (от всса полиэ11оксида) вдвое ускоряет процесс отверждения. [c.413]

    Проведен анализ литературных и патентных источников по окислению D-глюкозы и этиленгликоля. Разработаны методики гетерогенно-каталитического окисления D-глюкозы и этиленгликоля молекулярным кислородом, приготовления новых катализаторов и их модификации разработаны методы анализа реакционной массы. Изучена каталитическая активность синтезированных катализаторов (Pd-Bi/Сибунит) в реакции селективного окисления D-глюкозы. Определены оптимальные условия проведения процессов окисления D-глюкозы и этиленгликоля при варьировании следующих параметров интенсивности перемешивания, температуры, количества субстрата, катализатора и подщелачивающего реагента, скорости подачи кислорода. Показано, что скорость и селективность процесса существенно зависят от pH среды и температуры. Получены результаты по определению характеристик катализатора, реакционной смеси субстрата и продукта физико-химическими методами ИК-, РФЭ-спектроскопией, рентгенофлюоресцентным анализом, электронной микроскопией дериватографическим анализом. Данные РФЭ-спектроскопии показали что в биметаллическом катализаторе Pd-Bi/Сибунит (в окислении D-глюкозы) - содержится как Pd (0) так и Pd (2+), а висмут в состоянии Bi(3+). Данные дериватографического анализа показали, что катализатор Pd-Bi/Сибунит устойчив при температурах до 400 С, что удовлетворяет условиям эксперимента. Методом ИК-спектроскопии, по анализу смещения характеристических полос субстрата до и после координации с катализатором, установлено, что имеет место существенное взаимодействие катализатора с субстратом. В каталитическом окислении этиленгликоля оптимизирован реакционный узел и условия процесса окисления этиленгликоля в стационарном слое катализатора. [c.67]

    При гидрировании на палладиевом катализаторе винилбутилового эфира получен этилбутиловый эфир соответственно При гидрировании винилэтилового эфира этиленгляко-ля и дивииилового эфира этиленгликоля—диэтиловый эфир этиленгликоля, дивииилового эфира бутаидиола—диэтило-аый эфир бутандиола-1,4. [c.25]

    Окислдя этилен кислородом воздуха на серебряных катализаторах, сначала получают окись этилена, которую гидролизуют в кислой среде до этиленгликоля  [c.34]

    Для разработки высокопроизводительных энерго- и ресурсосберегающих технологий этиленгликоля и холинхлорида была получена математические модели и алгоритмы расчета процессов гетерогенно-каталитической гидратации оксида этилена и синтеза холинхлорида в присутствии гомогенных катализаторов. С их использованием осуществлен поиск и анализ эффективных ус1ювий синтеза, жидкофазных реакторных узлов различного типа. Найдены условия и аппаратурное оформление процессов, позволяющие существенно снизить энергетические затраты и повысить качество получаемых продуктов. [c.5]

    Так, для организации производства этиленгликоля мощностью 5000 т/год по раствору, содержащего около 80% масс, гликолей и обеспечения стабильной работы катализатора в течение длительн010 времени (более 8000 час), необходим реакторный узел с рассредоточенной подачей оксида этилена с числом точек ввода оксида равным, как минимум, 3. Для реализации данного решения на производстве нами была предложена технологическая схема, включающая каскад последовательно соединенных реакторов не равного объема с гюдачей оксида этилена в смесители, установленные перед каждым реактором каскада. При этом реакторы каскада могут содержать один или несколько модулей (например, модулей разработанных нами в [6]), соединенных в последовательно параллельную цепь. [c.5]


Смотреть страницы где упоминается термин Катализаторы этиленгликолем: [c.188]    [c.75]    [c.545]    [c.275]    [c.367]    [c.411]    [c.42]    [c.356]    [c.369]    [c.294]    [c.48]   
Полиэфирные волокна (1976) -- [ c.43 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий как катализатор разложение этиленгликоля в присутствии

Этиленгликоль



© 2025 chem21.info Реклама на сайте