Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура сетка в сетке

    Если твердое тело может поглощать влагу или находится во влажном состоянии, то, как правило, оно является пористым. Большинство пористых, особенно высокопористых тел, можно представить как более или менее жесткие пространственные структуры — сетки или каркасы. Их в коллоидной химии называют гелями. Это уголь, торф, древесина, картон, бумага, ткани, зерно, кожа, глина, почвы, грунты, слабообожженные керамические материалы и т. д. Пористые тела могут быть хрупкими или обладать эластическими свойствами. Их часто классифицируют по этим свойствам. Пористые материалы обладают значительной и разной адсорбционной способностью по отношению к влаге, которая придает им определенные свойства. На практике в качестве адсорбентов. предназначенных для извлечения, разделения и очистки веществ, применяют специально синтезируемые высокопористые тела. Эти тела кроме большой удельной поверхности должны обладать механической прочностью, избирательностью и рядом других специфических свойств. Наиболее широкое применение находят активные угли, силикагели, алюмогели, цеолиты. [c.129]


    Для аномально вязких систем характер изменения вязкости при разных напряжениях различается (рис. 6.2). При малых напряжениях зависимости т)=/(Р) отвечают закону Ньютона, характерному для нормальных низкомолекулярных жидкостей. В отличие от последних коэффициент т1о (называемый наибольшей ньютоновской вязкостью) для полимеров и дисперсных систем в этой области напряжений весьма высок (10 —10 Па-с). С увеличением напряжения сдвига происходит разрушение малопрочной пространственной структуры (сетки) системы и скорость течения аномально возрастает, пока при относительно больших напряжениях структура не будет разрушена полностью и в процессе течения не будет успевать восстанавливаться. Поэтому при больших напряжениях система характеризуется также ньютоновским законом течения, но коэффициент т)т (называемый наименьшей ньютоновской вязкостью) намного меньше, чем т о. [c.151]

    При приложении к полимеру внешней деформирующей силы деформация развивается в зависимости от времени действия этой силы. В начале действия силы перемешаются сегменты, не входящие в состав узлов сетки. Это подтверждается приведенными выше значениями времени оседлой жизни сегментов, не входящих в узлы сетки (малые доли секунды). В результате перемещения этих свободных сегментов клубкообразная форма макромолекул, характерная для исходного равновесного состояния, искажается, макромолекулярные клубки оказываются вытянутыми в направлении действия силы. Время оседлой жизни связанных сегментов, т. е. входящих в узлы сетки, более велико это значит, что они вначале не распадаются и целостность структуры флуктуационной сетки сохраняется. Если снять деформирующую силу, то сегменты возвратятся в исходное состояние. Таким образом деформация, возникающая при малом времени действия силы, оказывается обратимой. Это эластическая деформация. [c.99]

    В зависимости от знака заряда противоиона, вступающего в обмен, различают катиониты и аниониты. Катиониты обменивают катионы, аниониты — анионы. Наибольшее значение имеют органические иониты из синтетических ионообменных смол, образующие структуру пространственной сетки. Сетка полимера, заполненная раствором, является как бы одной гомогенной фазой, в узлах которой закреплены ионы одного знака. Противоионы находятся в растворе внутри сетки и способны обмениваться. Активные группы у катионообменных смол —ЗОзН, — СООН, —ОН, —РО3Н2 и др. Анионообменные смолы содержат аминогруппы. В общем виде ионный обмен на границе ионит—раствор можно выразить уравнением [c.252]


    Помимо химической природы полимера и органического растворителя на способность полимеров растворяться влияют и другие факторы. С уменьшением молекулярной массы и увеличением гибкости полимеров их растворимость возрастает. Увеличение плотности упаковки полимера уменьшает его растворимость. Кристаллические полимеры растворяются в органических растворителях только при температурах, близких к температурам плавления. Полимеры с сетчатой пространственной структурой не растворяются в органических растворителях, а могут лишь набухать в них. Иллюстрацией сказанного является сопоставление растворимости в бензине натурального каучука, который имеет активные двойные углеродные связи, и вулканизованного каучука — резины, имеющей структуру пространственной сетки за счет насыщения двойных связей вулканизатором — серой. В первом случае имеет место растворение с образованием резинового клея резина в бензине не растворяется, а лишь частично набухает. [c.44]

    При различных условиях деформирования, соответствующих различным условиям эксплуатации, те или иные параметры могут по-разному влиять на поведение резин. В области малых деформаций (<1%) теплообразование и тангенс угла механических потерь определяются в основном типом сажи в области больших деформаций (> 10%) определяющую роль играет структура сетки подвижной каучуковой матрицы в области средних деформаций влияние различных структурных параметров соизмеримы между собой. [c.91]

    Радиационная деструкция происходит под влиянием нейтронов, а также а-, р-, у-излучения. В результате разрываются химические связи (С—С, С—Н) с образованием низкомолекулярных продуктов и макрорадикалов, участвующих в дальнейших реакциях. Облучение полимеров изменяет их свойства с образованием двойных связей или пространственных структур (трехмерной сетки) или приводит к деструкции. Но иногда происходит и улучшение качеств облучаемого полимера. Например, полиэтилен после радиационной обработки приобретает высокую термо- и химическую стойкость. Радиоактивное излучение, ионизируя полимерные материалы, способно вызывать в них и ионные реакции. [c.411]

    Специфика растворной полимеризации обусловливает возможность получения полимеров, содержащих некоторое количество микроблоков полистирола. Проведенные исследования [43, 44] показали, что наличие в сополимере значительных количеств микроблоков полистирола приводит к заметному ухудшению свойств резин, связанному, по-видимому, с появлением дефектов в структуре вулканизационной сетки так, с увеличением содержания микроблоков полистирола наблюдается значительное понижение напряжения при удлинении, сопротивления разрыву, эластичности и сопротивления истиранию, повышение теплообразования и остаточной деформации (рис. 5). [c.278]

    Высокие показатели при 150°С для солевых вулканизатов БЭФ-10 являются следствием отличий в структуре солевой сетки и, по-видимому, связаны с образованием солевых групп, отстоящих от полимерной цепи. [c.407]

    Наряду с системами солевой вулканизации реальные резины должны содержать также системы ковалентной вулканизации, обеспечивающие образование необходимого количества прочных сшивок, определяющих сохранение формы изделия в процессе его эксплуатации, температурный ход эластичности и другие важные свойства. Гидроокись кальция не препятствует проведению серной вулканизации, однако она ускоряет ее, разрушает отдельные ингредиенты систем серной вулканизации и, по-видимому, оказывает существенное влияние на структуру образующейся сетки. Поэтому результаты, полученные при серной вулканизации без гидроокиси кальция, нельзя переносить на вулканизацию в ее присутствии и необходима разработка специальных систем серной вулканизации. [c.409]

    Структура ВМС на поверхности раздела фаз эмульсий. Если на свободных поверхностях жидкость — жидкость и жидкость — газ возможна любая ориентация в зависимости от условий, то на поверхности стабильных эмульсий молекулы ВМ ПАВ образуют трехмерную сетку определенных параметров [4, 24]. При исследовании жировых шариков молока разработаны [25, 26] методики выделения оболочечных защитных структур, состоящих из белковых молекул и имеющих под микроскопом вид сот размером в несколько микрон. [c.423]

    Сшитые (трехмерные, сетчатые, пространственные) полимеры - полимеры, цепи которых соединены между собой статистически расположенными химическими связями с образованием единой пространственной структуры (полимерной сетки). [c.406]

    Электронное возбуждение, ионизация, образование радикалов, окисление и сшивка также являются основными процессами, происходящими в твердых полимерах под действием ядерного облучения (а, р,у-излучение, нуклоны). С учетом влияния подвижности молекул на кинетику деградации и сшивку материала усиливающее действие напряжения возможно, но это еще нельзя считать доказанным. Перед современными исследователями стоит задача понять взаимосвязь между характеристиками облучения (зависимость дозы облучения и скорости дозирования), структурой сетки и макроскопическими свойствами материала после его облучения [198, 200,219]. [c.322]


    В практике проведения исследований возникает необходимость определения характера пористой структуры порошков различной степени дисперсности. Однако применяемый для исследования монолитных образцов дилатометр позволяет проводить исследования на порошках с размером частиц не менее диаметра капилляра (2,5— 6 мм) или отверстий впаянной в дилатометр сетки (0,3— [c.234]

    Большой коэффициент удержания (иммобилизации) дисперсионной среды можно объяснить сильно развитой сольватной оболочкой, объем которой в несколько (до 16) раз больше объема ядра. Аналогичные структуры образуются и из асфальтитов, но при относительно высоких концентрациях и при меньшем развитии сольватной оболочки. Такие частицы, по-видимому, проникают в межчастичный объем агрегатов сажевых частиц, коэффициент удержания которых равен 1,5. Дальнейшее увеличе ние концентрации ВМС нефти приводит к формированию новых самостоятельных (неадсорбированных) структур, которые в дальнейшем укрупняются с образованием пространственной сетки. В состав этой сетки входят и сажевые агрегаты, создавая таким образом конгломератную пространственную структуру. В состав структуры входят не только сольватные слои, но также окклюдированная дисперсная фаза, в результате чего при 18%-ной концентрации ВМС нефти их наполненные растворы оказываются заполненными неподвижной дисперсной фазой на 80-90%. Разрушение структуры происходит постепенно по слабым связям. В первую очередь разрушаются, по-видимому, связи между агрегатами частиц сажи и в последнюю очередь — мобильные гибкие агрегаты молекул из структур ВМС нефти. [c.263]

    Здесь С — параметр, характеризующий непосредственно структуру (конфигурацию) полимерных цепей и имеющий размерность вязкости, а т)г — функции соответствующих параметров х,, влияющих на структуру сетки. [c.174]

    В тех случаях, когда химическими процессами пренебречь нельзя, их можно, учесть или исключить. Рис. 3.2 поясняет сказанное. Действие химических процессов здесь приводит к линейному падению напряжения. Экстраполяция этой линейной зависимости на ось напряжений дает условно равновесное напряжение, которое в отсутствие химических процессов было бы истинно равновесным, соответствующим неизменной структуре пространственной сетки резины. Следовательно, условно равновесное напряжение можно считать равновесным, отнесенным к неизменному начальному состоянию материала, и применять к нему термодинамические соотношения. [c.64]

    В противоположность этому связнодисперсные системы, вследствие наличия сил взаимодействия между их частицами, обладают в известной степени свойствами твердых тел — способностью сохранять форму, некоторой прочностью, упругостью, часто эластичностью. Однако из-за малой прочности связи между отдельными элементами структуры сетки структуры в связнодисперсных системах сравнительно легко разрушаются и эти системы приобретают способность течь. [c.314]

    В 1941 г. П. А. Ребиндер описал свойства бентонитовых глин, дающих прочные студнеобразные структуры, обладающие тиксотропией. По его мнению структурообразование идет по двум направлениям 1) жидкостные оболочки вокруг частичек создают при значительной концентрации суспензии сплошную упруго-вязкую систему 2) асимметрические частички, соприкасаясь своими краями, образуют как бы сетку. Было отмечено влияние поверхностно-активных веществ на этот процесс. [c.8]

    В структуре флуктуационной сетки существуют узлы, которые возникают к распадаются особенно медленно. Природа таких узлов не всегда ясна. Они могут возникнуть при наличии остатков катализатора, химически [c.128]

    Если нет внешней сдвигающей силы, тиксотропная структура равнопрочна во всех направлениях (рис. 51, а). При наложении внешней сдвигающей силы Р < Р г происходит упорядочение пространственной сетки структуры. Связи сетки разбиваются на два класса  [c.138]

    В работах П. А. Ребиндера и его школы показано, что дисперсии глин в воде образуют коагуляционные структуры — пространственные сетки с различной прочностью. Все механические свойства таких структур объясняются тем, что частички глины по участкам контактов всегда разделены остаточными тонкими, термодинамически устойчивыми прослойками водной среды, через которые действуют силы моле- [c.236]

    С], а отсюда и частоту сетки, а по наклону прямой (8.31) найти С2 и оценить количественно степень отклонения структуры сетки от идеальной. [c.116]

    Молекулы воды, способные участвовать в четырех водородных связях (две связи через водород и две через кислород), могут образовывать пространственную сетку связей, что обусловливает ажурную тетраэдрическую структуру льда. Сетка водородных связей, правда несколько искаженная, сохраняется как ближний порядок и в жидкой воде (в особенности вблизи температуры кристаллизации), определяя ряд специфических черт этой жидкости и водных растворов. [c.124]

    Гели представляют собой пространственные сетки, образованные либо твердыми коллоидными частицами, либо гибкими макромолекулами, в промежуточных объемах которых находится растворитель. Если гели образуются твердыми коллоидными частицами типа 5102, РегОз,УгОб, то они называются хрупкими гелями. Если пространственная сетка образована макромолекулами ВМС, гели называются эластичными гелями или студнями. Хрупкие гели имеют двухфазную гетерогенную структуру, а эластичные гели (студни) представляют собой гомогенную систему. [c.371]

    В главе I этой книги уже было рассказано об энтропийной природе упругости полимеров в каучукоподобном состоянии. Реальный полимер представляет собой сложную сетку переплетенных цепей для проявления высокоэластичности без течения необходимо наличие поперечных связей между цепями. Прежде чем исследовать особенности поведения такой сетки, следует рассмотреть растяжение изолированных цепей. Первые работы Куна, Марка и других ученых, посвященные молекулярной теории упругости каучука, целиком основывались на таком рассмотрении и не учитывали явлений, возникающих вследствие объединения цепей в единую сетку. Для построения подлинной теории упругости каучука, связывающей физико-механические свойства материала с химическим строением его молекул, необходимо изучить наряду со свойствами отдельных цепей их поведение в сетке. Однако изучая растяжение изолированных цепей, мы приходим к пониманию и основных особенностей растяжения сетки. Как указывал П. П. Кобеко [ ], равновесные механические свойства каучука и других эластомеров в первую очередь определяются внутримолекулярными свойствами цепей полимера и структурой сетки, образованной из этих цепей. Однако межмолекуляриое взаимодействие ответственно не только за временной и температурный интервалы, в которых проявляется высокоэластичность, но и за струвтуру сетки и гибкость цепей. [c.364]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    В фильтровальных тканых сетках продольные и поперечные проволоки имеют разный диаметр и располагаются с неодинаковой частотой продольные проволоки (основа) имеют больший диаметр (0,7—0,18 мм) и располагаются довольно редко (24—200 на 1 дм ширины), а поперечные проволоки (уток) имеют меньший диаметр (0,4—0,12 мм) и распола1гаются гораздо чаще (250—1750 на 1 дм). Фильтровальные сетки в отличие от других не имеют ячеек, видимых на просвет, так как поперечные проволоки в них расположены вплотную, что обеспечивает прочную структуру сетки. [c.207]

    Формирование дисперсной структуры нефти определяется, в основ-но.м, температурой и при наличии газа - также давлением в системе. Закономерности протекания процессов, составляющих первую стадию, рассматривались ранее. В пределах температур, в которых возможно, образование отложений, гидравлическое состояние системы на протекании процессов, составляющих первую стадию, практически не сказывается. Влияние гидравлической ситуации на состояние нефти как дисперсной системы проявляется лищь при температурах, ниже температуры гелеобразования, когда механическое перемешивание способно разрушить пространственную сетку, составленную из сшитых кристалликов парафина, и поддерживать нефть в свободнодисперсном состоянии. Между тем именно гидравлическое состояние в системе определяет особенности протекания последующих двух стадий. Закономерности перемещения частиц дисперсной фазы к местам формирования отложений, а также баланс сил, обеспечивающий закрепление частиц на поверхности подложки, полностью обуславливаются гидравлической ситуацией в системе. [c.54]

Рис. 22. Структура исходного натриевосиликатного стекла (а) и структура пористого стекла (б), полученного выщелачиванием без изменения структуры кремнекислородной сетки (по С. П. Жданову, Л. С. Ястребовой и Е. В. Коромальди [22]) Рис. 22. Структура исходного <a href="/info/500108">натриевосиликатного стекла</a> (а) и <a href="/info/348859">структура пористого стекла</a> (б), <a href="/info/759714">полученного выщелачиванием</a> без <a href="/info/8616">изменения структуры</a> кремнекислородной сетки (по С. П. Жданову, Л. С. Ястребовой и Е. В. Коромальди [22])
    Для стабилизации эмульсий применяют прежде всего сульфонол НП-1, а также группирующиеся вокруг него реагенты. Для обеспечения технологии перекачки высоковязких нефтей по трубопроводу в виде эмульсий эмульгатор должен придавать максимальную устойчивость эмульсии при низких температурах и минимальную при повышенных для обеспечения легкого и полного отделения воды от нефти на конечных пунктах. Механизм действия депрессаторов не выяснен окончательно, но большинство исследователей отмечают два варианта их действия [37] 1) частицы присадки образуют с парафином смешанные кристаллы, что приводит к принципиальному изменению их строения и предотвращает образование сплошной структуры сетки 2) частицы присадки выступают как центры, вокруг которых кристаллизуется парафин, образуя не связанные между собой агрегаты. [c.118]

    Прежде всего максимальная вязкость системы т]1- = = 11, + т1э, способной к образованию сплошной структуры, не может служить характеристикой этой системы. Она определяется в первую очередь конструктивным параметром прибора Я, на котором проводится измерение. Кроме того, величина т] для такой системы никак не связана с прочностью структурной сетки (величинами аГ ). Это на первый взгляд парадоксальное качество т) на самом деле очевидно если при некотором режиме течения цепи различной прочности имеют одинаковую длину (I = Я), то их сопрагивление потоку будет одинаковым. Это относится к любой структуре—одинаковые по структуре сетки создают одинаковое гидродинамическое сопротивление независимо от их прочности. Эго так же естественно, как и то, что прочность частиц не входит в формулу Эйнштейна для вязкости устойчивых золей и суспензий. Реологический параметр, который зависит от прочности сетки для таких систем,—это верхняя граница диапазона скоростей сдвига, в пределах которого цепь (структура) остается неразрушенной в том смысле, что размер I цепей (фрагментов трехмерной структуры) остается равным характерному размеру измерительного прибора Я. [c.210]

    Поскольку в настоящее время имеется ряд хороших монографий, посвященных проблемам реологии и, в частности, вязкости полимеров (см., например, [38, 49]), мы ограничимся лишь кругом вопросов, касающихся механизма вязкого течения в связи со структурными и релаксационными принципами, изложенными выше. В частности, уравнение (V. 2) уже дает определенную почву для раздумий на что конкретно расходуется механическая энергия Из вполне очевидного ответа — на разрушение структуры системы — следует немедленно второй вопрос о влиянии скорости воздействия (мерой которой служит градиент у, имеющий размерность обратную времени) на это разрушение и, соответственно, на диссипацию энергии и величину вязкости. При этом выясняется, что всем полимерным системам в вязкотекучем состоянии присуща так называемая аномалия вязкости [термин неудачный, ибо отклонение от формулы (V. 1), вызванное естественными и физически легко интерпретируемыми причинами, вряд ли следует считать аномалией], проявляющаяся в зависимости эффективной (т. е. измеряемой в стандартных условиях, при фиксированных Я и -у) вязкости от Р или от у. Эта аномалия связана как с разрушением структуры системы, так и с накоплением высокоэластических деформаций в дополнение к пластическим (необратимым). Эти деформации и разрушение претерпевает суперсетка, узлы которой образованы микроблоками или, в меньшей мере, перехлестами единичных цепей. При переходе от расплава к разбавленному раствору относительный вклад последних в структуру сетки возрастает, точнее, выравниваются времена их жизни и времена жизни флуктуационных микроблоков. [c.163]

    Упомянутые идеализированные варианты были использованы прнменлтельно к полимерам, которые в покое были скорее в стеклообразном, нежели структурно-жидком деформационном состоянии. В принципе, определенные удобства для разделения вязких и высокоэластических составляющих деформаций и соответственно зондирования релаксационного спектра представляет невулкани-зованные или недовулканизованные каучуки. (Конечно, при этом приближение к вязкому течению осуществляется со стороны высокоэластического состояния). В этом случае при достаточно широком диапазоне изменения Р (или растягивающего напряжения) удается довольно существенно менять и у. не попадая в экстремальные условия, когда начинают работать термокинетические эффекты структура сетки меняется при этом не слишком сильно, а механизмы прекращения течения не связаны с фазовыми превращениями. Особенно удобны опыты такого рода (течение каучуков через патрубки) для наблюдения высокоэластической турбулентности. Однако указанные системы не находятся в типичном вязкотекучем состоянии и потому здесь не рассматриваются. [c.183]

    Таким образом, теория Зябицкого отражает влияние структуры сетки через Л эф, влияние конфигурационной энтропии, внутренней энергии, энтропии смеси вращательных изомеров через параметр р, [c.121]

    С другой стороны, образование твердых тел с характерными для них механическими свойствами также теснейшим обрааом. связано.,а процессами, изучаемыми современной коллоидной химией в виде проблемы структурообразования в дисперсных системах (суспензиях) и растворах высокомолекулярных соединений. Большое значение здесь имеют оба основных типа структур. Первый тип — это коагуляционные структуры (пространственные сетки), возникающие вследствие беспорядочного сцепления мельчайших частичек дисперсной фазы или макромолекул через тонкие прослойки данной среды, и кристаллизационно-конденсационные структуры, образующиеся в результате непосредственного срастанЯя кристалликов с образованием поликристаллического твердого тела Второй тип — образование химических связей (поперечных мостиков), как при вулканизации линейных полимеров типа каучуков или в пространственных полимерах, например, в студнях кремнекислоты. [c.211]

    Существует очень мало количественных данных, характеризующих параметры структуры флуктуационной сетки. Приблизительно можно сделать следуюн1ую полуколичественпую оценку в неполярном эластомере при комнатной температуре время оседлой жизни сегмента, не входящего в состав узла сетки, составляет 10 —10 с по прошествии этого времени сегмент перемещается в очередном элементарном акте теплового движения время оседлой жизни сегмента, входящего в состав узла сетки (ассоциат или зацепление), составляет 10—10 с, т. е. достигает почти 3 ч. Для сравнения укажем, что время распада химических связей, как по- [c.98]

    Очевидно, что число свободных концов, согласно вышепринятой характеристике сетки, равно удвоенному числу исходных макромолекул, из которых образован данный участок сетчатой структуры. Для достаточно плотно сшитых сеток, когда влиянием свободных концов на структуру сетки можно пренебречь. Тогда для густых сеток N, =v, т. е. число отрезков цепей между узлами сетчатой структуры равно числу узлов сетки, и все основные свойства сетчатой структуры определяются этим параметром. Так, модуль сдвига или растяжения такой сетки прямо гропорционален Л/с или V (см. ч. 2). Эти пололашия справедливы, .1,ля сетчатых структур, в которых межмолекулярное взаимодействие в участках между узлами сетки пренебрежимо мало и не влияет на свойства сетчатых эластомеров. Если же меж молеку-лярное взаимодействие между отрезками цепей сетки велико (пластики, волокна), то его вклад в механические свойства таких сеток будет существенным, что необходимо учитывать при их описании. В этом случае модуль сетки определяется этими физическими силами межмолекулярного взаимодействия и число химических узлов не влияет на его величину. С повышением температуры силы межмолекулярного взаимодействия преодолеваются тепловым движением сегментов макромолекул, и механические свойства сетки определяются числом химических поперечных связей (узлов сетки). [c.297]

    Для получения ионитовой смолы с оптимальной по структуре пространственной сеткой поликонденсация (или полимеризация) должна быть проведена так, чтобы полученные линейные цепи были бы достаточно разветвлены и связаны друг с другом мостиками . Это можно пояснить на следующих примерах. [c.55]


Смотреть страницы где упоминается термин Структура сетка в сетке: [c.434]    [c.637]    [c.151]    [c.135]    [c.42]    [c.49]    [c.151]    [c.110]    [c.119]    [c.432]    [c.277]    [c.189]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.224 , c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Сетки



© 2025 chem21.info Реклама на сайте