Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий температура плавления

    Скорость растворения полимера зависит от скорости диффузии молекул растворителя в частицы полимера. Как правило, продолжительность растворения обратно пропорциональна кубу площади гранул полимера. Поэтому казалось бы, наиболее тонкое измельчение полимера до пылевидного состояния должно быть целесообразным. Однако пылевидный полимер трудно замешивается с растворителем и легко образует комочки набухшей массы, диффузия в которые сильно затруднена. Поэтому степень дисперсности полимера должна иметь оптимальную величину в пределах 0,05—0,3 мм и достаточно узкий фракционный состав. Высококонцентрированные растворы полимеров, таких, например, как ПБА, ПФТА, при низких температурах представляют собой твердый гель, температура плавления которого тем выше, чем больше [c.69]


    Молекулы водорода отличаются большой прочностью и малой поляризуемостью, незначительными размерами и малой массой, а следовательно, и большой подвижностью. Поэтому у водорода очень низкие температуры плавления (—259,1°С) и кипения (—252,6°С) он уступает в этом отношении лишь гелию. По тем же причинам он очень незначительно растворяется в воде и органических растворителях. У твердого водорода гексагональная молекулярная решетка. Вследствие высокой энергии диссоциации (435 кДж/моль) распад молекул [c.273]

    Температура плавления гелей зависит от концентрации [c.382]

    Вследствие относительно большего размера атома (молекулы) аргон более склонен к образованию межмолекулярных связей, чем гелий и неон. Поэтому аргон в виде простого вещества характеризуется несколько более высокими температурами плавления (—189,3°С) и кипения (—185,9°С). Он лучше адсорбируется. Твердый аргон имеет кубическую гранецентрированную решетку. [c.611]

    Из экспериментальных значений атомных функций распределения для многих моноатомных жидкостей вычислены координационные числа, которые несколько отличаются от аналогичных величин для твердой фазы. Для большинства простых веществ плавление сопровождается увеличением объема и координационные числа в жидкой фазе меньше, чем в кристаллической, У некоторых элементарных веществ (висмут, германий) плавление сопровождается уменьшением объема, В этом случае координационное число в жидкой фазе больше, чем Б кристалле. Сказанное подтверждается следующими данными, где сопоставлены (п ж) координационные числа в кристалле и в жидкой фазе для области температур, близкой к температуре плавления гелий (12 8,4), неон (12 8,6), аргон (12 10,5), ксенон (12 8,5), литий (14  [c.229]

    Из таблицы видно, что при обычных условиях температуры и давления все инертные элементы в виде простых веществ газообразны. Самая низкая температура кипения у гелия. Это вообще наиболее трудно сжижаемое вещество. При испарении жидкого гелия достигается температура, близкая к абсолютному нулю. В связи с этим гелием пользуются в криогенной технике для получения очень низких температур. Гелий—единственное рабочее тело в газовых термометрах, пригодное для измерения температур ниже Г К- Температуры плавления и кипения других инертных веществ закономерно повышаются от гелия к радону. [c.538]

    Самой низкой температурой плавления —272,1° С (25 атм) обладает инертный газ гелий самой высокой +3845° С — углерод. [c.100]


    Инертные газы характеризуются чрезвычайно низкими температурами плавления и кипения, повышающимися от гелия к радону, [c.634]

    Инертные газы представляют собой вещества с относительно-очень низкими температурами плавления и кипения. Температура плавления гелия лежит близко от абсолютного нуля. По мере роста атомных масс температура плавления и кипения инертных газов повышается и у радона 4ип достигает —61,9°С. [c.198]

    Вещества находятся в кристаллическом состоянии при температурах от О К до некоторого значения зависящего от давления (однако, чтобы заметно изменить Тцл, нужны весьма высокие давления). Температура плавления для различных веществ меняется в широких пределах в зависимости от характера взаимодействий в системе. Единственное вещество, которое при атмосферном давлении остается жидким вплоть до абсолютного нуля, — гелий, особые свойства которого находят объяснение в свете квантовой статистической теории. Кристаллизация гелия происходит только при высоком давлении (при р = 2,5 МПа Г р ет = 1,5 К). [c.310]

    В свободном состоянии большинство металлоидов существует в форме молекул. В одних случаях эти молекулы одноатомны (благородные газы) или двухатомны (N2, Рг, СЬ), в других — достигают гигантских размеров (в случае, например, бора и алмаза). Температуры плавления металлоидов охватывают широкий диапазон значений. Самая высокая температура плавления у углерода ( — 4000 К), самая низкая — у гелия (1 К). [c.402]

    Температуры плавления и кипения инертных элементов очень низки (см. табл. 30). В жидком состоянии гелий образует две модификации гелий I и гелий II. Последний проявляет сверхтекучесть , вязкость его в раз меньше вязкости газообразного водорода. [c.403]

    Тетрахлорид восстанавливают в атмосфере аргона или гелия в реторте из нержавеющей стали. Реторту помещают в печь с тремя зонами нагрева. Крышку реторты герметизируют гидравлическим затвором из сплава Pb-Sb (247°), предотвращающим разрушение аппарата при резком повышении давления из-за нарушения хода процесса. В нижней части реторты устанавливают стальной тигель, заполненный магнием, количество которого берут с избытком 10—20%. В нижней зоне печи поддерживают температуру 825—875°, т. е. выше температуры плавления Mg и Mg . Температура в верхней зоне 300—350°. [c.349]

    Гелий — квантовая жидкость (ему посвящена следующая глава). Строение других жидких инертных газов изучалось дифракционными методами неоднократно. Особенно подробно был исследован жидкий аргон. О результатах этих работ говорилось в гл. VI. Координационные числа атомов инертных газов, приводимые в литературе, различаются на 20—30%. Расхождения объясняются неточностями эксперимента и неоднозначностью способа расчета координационных чисел. Наиболее достоверные значения 2 жидких инертных газов около температуры плавления, по-видимому, близки к 8. Это значение координационного числа в сочетании с данными о росте объема при плавлении, приведенными в табл. 29, может быть истолковано с помощью модели хаотически распределенных сфер, изученной Д. Берналом и С. Кингом. Вместе с тем вопрос о строении жидких инертных газов пока еще [c.224]

    Температуры плавления и кипения гелия близки к наинизшему возможному пределу охлаждения вещества — температуре абсолютного нуля. Она лежит при —273,15°С (точно) [c.38]

    Исключение составляет гелий (Не ), который переходит в твердое состояние только при повышенных Р > 25 ат) давлениях. При = 30 ат температура плавления твердого гелия 1,8 К- [c.59]

    Валентный слой атома аргона, как и неона, содержит восемь электронов. Вследствие большой устойчивости электронной структуры атома (энергия ионизации 15,76 эВ) соединения валентного типа для аргона не получены. Имея относительно больший размер атома (молекулы), аргон более склонен к образованию межмолекулярных связей, чем гелий и неон. Поэтому аргон в виде простого вещества характеризуется несколько более высокими температурами плавления (—184,3 °С) и кипения (—185,9 °С). Он лучше адсорбируется. [c.540]

    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]


    По строению электронной оболочки атомов к металлам относят все s-элементы, кроме водорода и гелия, все d- и f-элементы и ряд р-элементов — алюминий, олово, свинец и др. Металлы в конденсированном (жидком или твердом) состоянии обладают способностью к отражению света, высокой тепло- и электропроводностью, пластичностью и текучестью. Они имеют сравнительно высокие температуры плавления и кипения. Эти специфические свойства металлов объясняются наличием у них особого типа химической связи, получившей название металлической связи. Атомы металлов содержат на внешнем энергетическом уровне небольшое количество электронов, которые достаточно слабо связаны со своим ядром, В то же время атомы металлов имеют много свободных валентных орбиталей. Эти орбитали отдельных атомов перекрываются друг с другом, обеспечивая электронам способность свободно перемещаться между ядрами во всем объеме металла. Следовательно, в кристаллической решетке металлов электроны обобществлены. Они непрерывно перемещаются между положительно заряженными ионами, которые расположены в узлах кристаллической решетки. При этом сравнительно небольшое число обобществленных электронов ( электронного газа ) связывает большое число ионов, [c.116]

    Температура плавления углеводородов в зависимости от молекулярной массы и строения изменяется от -182,5°С для метана до +80°С для парафиновых углеводородов. Из неуглеводородных компонентов, присутствующих в газах и нефти, следует отметить температуру плавления углекислоты и воды - соответственно -56,5°С и 0°С. Присутствие углекислоты и влаги в газе в низкотемпературных процессах, таких как производство гелия, сжиженного газа, этана, вызывает образование отложений твердой углекислоты на стенках трубопроводов и теплообменных трубок, что приводит к их забивке. [c.31]

    Пикнометрические измерения плотности дали величину 2,537 0,003 г/сж . При нагреве на воздухе (на платиновом листке) AlBio сохранял свой обычный вид примерно до 700°. Затем начинала образовываться белая игольчатая фаза. Кристаллы AlBio исследовались при высоких температурах для определения точки плавления. Они нагревались в тиглях из нитрида бора в атмосфере гелия. Температура плавления оказалась равной 2000—2100 . По данным [80], она составляет 2423 50°. В работе [81] отмечается, что А1Вю существует в интервале температур 1660—1850°. [c.25]

    Охлаждая сжиженные газы быстрым яопареяием под уменьшенным давлением, можно их получить в твердом виде. Твердый гелий (температура плавления —272,0° С) получил Кизо1М (1926). Для получения твердого СОз достаточно выпускать жидкость, из баллона в мешок яз кисея. Быстрое яспаренж вызывает застывание в снегоподобную массу (температура плавления —57°). [c.148]

    Вандерваальсовы связи в молекулярных кристаллах и жидкостях обычно тем сильнее, чем больше размеры атомов и молекул. Например, при переходе к благородным газам с большими порядковыми номерами прочность вандерваальсовой связи также возрастает это видно из сопоставления кривых потенциальной энергии для систем Не—Не и Аг—Аг, которое проводится на рис. 14-14. Притяжение между более тяжелыми атомами возрастает главным образом по той причине, что внешние электроны в них удерживаются менее прочно, и это делает возможным появление больших мгновенных и индуцированных диполей. Возрастание вандерваальсовых сил объясняет факт плавления твердого аргона при температуре — 184°С (т.е. 89 К), которая значительно выше, чем температура плавления твердого гелия. [c.616]

    Измерения проводили в интервале температур 50-110°С, что обусловлено температурой плавления кристаллов кар-бамидаПЗЗ °С). ь опытах использовали чистые кристаллы карбамида, и качестве образцов для исследования были взяты нормальные углеводороды от Сд до 023, ароматические бензол, толуол, этилбензол, псевдокумол, бутилбензол, о-ксилол, а также 2,4-метилгексан. Перед каждым опытом пропускали гелий. При этом объем, удерживаемый на кристаллах, был равен нулю. Экспериментальные данные об удельных объемах, удерживаемых на чистых кристаллах карбамида (фракция 0,03-0,315 мм), приведена в табл.2.3. [c.47]

    Нефть содержание % температура плавления "С серы азота смол серно- кислот- ных смол силнка геле- вых асфальте нов Коксуе- мость % Золь- ность % 23- 200 °С 28-350 С [c.140]

    Значительная роль в процессах структурообразования в растворах желатины принадлежит гидрофобным взаимодействиям . Фазовые диаграммы желатина - вода характеризуются ВКТР, При охлаждении концентрированные растворы желатины застудневают. Основными характеристиками качества желатины являются вязкость разбавленных и концентрированных растворов, прочность гелей (студней), температура гелеобразования и температура плавления геля, определяемые в стандартных условиях. [c.382]

    Свойства. Благородные газы - бесцветные газообразные при комнатной темпера ре вещества. Конфигурация внешнего электронного слоя атомов гелия li, остальных элементов подгруппы VI11A - пл лр. Завершенностью электронных оболочек объясняется одноатомность молекул благородных газов, весьма малая их поляризуемсхггь, низкие температуры плавления и кипения, небольшие значения теплот плавления и парообразования, химическая инертность. В ряду Не - Rn физические свойства изменяются симбатно росту их атомной массы наблюдающийся при этом параллелизм в изменении родственных свойств приводит к простым зависимостям (рис. 3.60). [c.472]

    Свойства полиамидов и области их применения. Полиамиды— твердые роговидные полимеры с высокой температурой плавления (например, 218°С у капрона, 264°С у найлона). Высокая температура плавления объясняется значительным процентом кристаллической фазы и образованием водородных связей между цепями (рис. 66, а). Полиамиды обладают хорошими механическими свойствами. Они весьма стойки к истиранию и отличаются высокой разрывной прочностью (700—750 кгс1см ). Плотность 1,14. Полиамиды регулярного строения очень стойки к действию обычных растворителей. Только сильно полярные соединения, такие, как фенол, крезолы, муравьиная кислота, растворяют полиамиды такого типа. Смешанные полиамиды растворяются при нагревании в низших алифатических спиртах (метиловом, этиловом) в смеси с небольшими количествами воды (от 10 до 20%). При остывании и хранении растворы смешанных полиамидов преврашаются в гелеобразную массу. При нагревании гель можно снова превратить в прозрачный раствор. [c.236]

    Восстанавливают Ti в герметичном стальном реакторе (реторте) в атмосфере аргона или гелия (рис. 82). В реактор заливают расплавленный магний и при 800° сверху подают жидкий Ti li. Температурный интервал, в котором проводится восстановление, невелик нижний предел— температура плавления Mg (714°), верхний предел обусловлен следующим. Титан, взаимодействуя с материалом реторты — железом, образует эвтектический сплав с т. пл. 1085°. При 1085° реактор проплавляется, выше 900° усиливается загрязнение титана железом, которое переносится через газовую фазу хлоридом железа (II), образующимся при взаимодействии Ti l со стенками реторты и расплавленным магнием, растворяющим металлическое железо. При 900° растворимость железа в магнии равна 0,17%. Вследствие экзотермич-ности реакций температура повышается до 1400°. Такая температура допустима только в центральной зоне реактора, у стенок же не должна превышать намного 900°. Поэтому реактор охлаждают воздухом. [c.270]

    Существование устойчивых гидратов неполярных молекул в гораздо большей мере обусловлено их ячеистой структурой, чем образованием связей. Подобные гидраты распадаются при температурах, превышающих температуру плавления льда. Строение этих веществ объясняется следующим образом ячеистая структура льда (см. рис. 8.21) способна захватывать молекулы других веществ, которые достаточно велики, чтобы не проскакивать сквозь довольно узкие окна из одной ячейки в другую. Метан СН4 образует гидраты, но этан С2Н6 не дает их, поскольку его молекулы слишком велики, чтобы встраиваться в ячейки структуры льда. В то же время ксенон образует гидраты, а гелий не образует, поскольку его атомы слишком малы и проскакивают из одной ячейки структуры льда в другую, не удерживаясь в ней. [c.144]

    МЛ (4,45 лгмоля) триизобутилалюминия в 10 мл сухого бензола (примечание 9) и 150 мл (100 г) изопрена (примечания 10 и 11). Сосуд закрывают, интенсивно встряхивают в руках несколько раз и затем помещают в баню при 50° на 6 час при перемешивании или встряхивании (примечание 12) После этого сосуд охлаждают до комнатной температуры, выделяют сильно набухший полимер (примечание 13), размельчают его и заливают 1 л метанола, содержащим 2 г фенольного антиоксиданта. Затем полимерную массу раздергивают в среде метанола и антиоксиданта, после чего заливают свежей порцией метанола с антиоксидантом и оставляют набухать в течение нескольких часов, фильтруют и сушат в вакуумном сушильном шкафу при 40°. Выход гронс-полиизопрена 90— 100г (90—100%). Рентгенограмма полученного полиизопрена идентична с рентгенограммой природной ба-латы температуры плавления, определенные дилатометрически, составляют соответственно 56 и 64°. ИК-спектр синтетического полимера почти полностью совпадает с ИК-спектром природной балаты, правда в спектре полимера иногда присутствуют полосы поглощения 1,4-формы. Полученный полимер обычно содержит некоторое количество гель-фракции, которую можно удалить вальцеванием в течение нескольких минут при температуре ПО—130°. После вальцевания полимер полностью растворим в бензоле, а молекулярный вес его значительно больше, чем молекулярный вес балаты. Удельная вязкость в бензоле при 30° составляет 3—5 по сравнению с 0,8—1,0 для природной балаты. Вязкость по Муни при 100° равна 80—100 по сравнению с 10—20 для природной балаты.  [c.64]

    Кроме того, вязкость прогеля и геля зависит от характера присутствующих анионов и соответствует так называемой серии Гофмайстера (SOi < С < Вг < S H ). Так, хлористый натрий снижает вязкость геля, но повышает температуру плавления [2]. [c.520]

    Раствор комплекса ПВС — иод с концентрацией выше 10% (масс.) образует при комнатной температуре гель. Тиксотропные гели получают охлаждением нагретых смесей водных растворов ПВС, иода и иодистых солей в присутствии веществ, способных образовывать лабильные связи между цепями ПВС, например, борной кислоты. Температура плавления и застывания гелей зависит от молекулярной массы ПВС, его структуры и соотношения компонентов раствора. При введейии тиксотропного геля в организм образуется своеобразное депо иода, заполняющего пломбируемую область и постепенно рассасывающегося после оказания лечебного действия. Такие гели ПВС — иод — Н3ВО3 представляют интерес для пломбирования труднозаживающих полостей, куда они вводятся через иглу шприца при температуре выше температуры застывания геля [160, с. 111]. [c.162]

    Переработка пластизолей в различные изделия происходит при нагревании с большой скоростью повышения температуры. При этом вязкость золя сначала снижается, затем, пройдя минимум, повышается до потери текучести. Температура, при которой золь теряет текучесть и превращается в гель, называется температурой желатинизации. При дальнейшем нагревании гель сначала становится хрупким, потом при повышении температуры его прочность постепенно повышается, а поверхность становится глянцевой. Температура, при которой прочность геля достигает определенного уровня, называется температурой плавления [68]. Снижение начальной вязкости пластизоля при повышении температуры соответствует уменьшению вязкости пластификатора (дисперсионной среды). [c.266]

    В ионных гидридах связь между атомом металла и водородом ионная, причем водород образует здесь отрицательный ион H , принимая на ls-орбиталь дополнительный электрон, в результате чего он приобретает конфигурацию электронов инертного газа гелия. В этом отношении поведение атома водорода в гидридах щелочных и щелочноземельных металлов похоже на поведение атомов галогенов в галогенидах с теми же металлами. По физическим свойствам и по строению кристаллических решеток ионные гидриды также схожи с соответствующими галогенидами. Например, гидриды щелочных металлов кристаллизуются по типу каменной соли (Na l),, образуя типично ионную решетку, в которой каждый ион щелочного металла окружен шестью ионами водорода, а каждый ион водорода — шестью ионами щелочного металла. Как и вообще вещества с ионными решетками, ионные гидриды имеют сравнительно высокие температуры плавления. [c.178]


Смотреть страницы где упоминается термин Гелий температура плавления: [c.616]    [c.407]    [c.225]    [c.179]    [c.231]    [c.187]    [c.407]    [c.156]    [c.113]    [c.126]    [c.58]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Температура плавления



© 2025 chem21.info Реклама на сайте