Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий применение сплавы

    Сплав палладий — кобальт нашел широкое применение для покрытия контактов и придания изделиям специальных магнитных свойств. Катодное восстановление покрытия ведут из электролита (в г/л)  [c.158]

    Применяют также растворы, позволяющие объединить сенсибилизацию и активацию в одну технологическую операцию. Такие растворы называют совмещенными активаторами. Готовят их, как правило, путем приливания раствора хлорида палладия в солянокислый раствор хлорида олова(II). Вопрос о природе действия совмещенного активатора однозначно пока не решен. Установлено, что как при раздельной активации поверхности диэлектрика, так и в случае применения совмещенного активатора на поверхности диэлектрика образуются активные центры кристаллического палладия или его сплавов с оловом, инициирующие химическое восстановление металлов. Если после активирования поверхность не обладает достаточной каталитической активностью, то в качестве акселератора (ускорителя реакции восстановления металла) применяют повторно раствор активации или сильный восстановитель (чаще тот, который используют при химической металлизации). Для металлизации диэлектриков наиболее часто используют покрытия медью и никелем. [c.98]


    Нефтезаводские газы, подлежащие разделению, представляют собой смесь углеводородов с водородом. Основные физические константы водорода и газообразных углеводородов приведены в табл. 12. Водород из этих газов вьщеляют методами глубокого охлаждения, абсорбцией, адсорбцией, диффузией через мембраны с избирательной проницаемостью для водорода. Метод глубокого охлаждения нашел промышленное применение для выделения Нз из водородсодержащих газов. Для получения водорода высокой степени чистоты используют метод короткоцикловой адсорбции на цеолитах. Водород очень высокой степени чистоты в небольших количествах получают диффузией через мембраны из сплавов палладия, проницаемых для водорода, но непроницаемых для других газов и паров. Разрабатываются и полимерные мембраны, обладающие аналогичными свойствами, Метод абсорбции углеводородами с последующей ректификацией, особенно при пониженной температуре, может быть также использован для концентрирования водорода. Этот процесс имеет место в системах гидроочистки (см, стр, 20). [c.42]

    Много работ посвящено изучению стойкости платины и других металлов платиновой группы при анодной поляризации их в растворах хлоридов. Исследовалось электрохимическое поведение титана, покрытого платиной, родием, иридием [152, 153], а также сплавами платины с иридием [154] и сплавами с палладием [155, 156]. Сплавы платины с иридием отличаются от чистой платины значительно большей стойкостью при электролизе. Так, при электролизе 32%-ной соляной кислоты доля тока, расходуемая на растворение платинового анода, составляет около 5%, а при применении сплава из платины, с 10% иридия эта доля снижается до 0,9% [157]. [c.76]

    Гальванические покрытия нашли широкое применение в различных отраслях машино- и приборостроения. Покрытия на основе вольфрама и молибдена придают изделиям, изготовленным из стали или меди, повышенную термостойкость покрытия серебром, золотом, палладием и сплавами на их основе обеспечивают электропроводность и коррозионную стойкость покрытии никелем и кобальтом повышают коррозионную стойкость, магнитные характеристики и их стабильность в процессе эксплуатации узлов и агрегатов и т. д. [c.3]

    Физико-механические свойства серебра можно улучшить, применяя вместо чистого серебра его сплавы. Например, в качестве контактного материала нашел применение сплав серебра с кадмием весьма перспективным для этих же целей являются также сплавы серебра с сурьмой, никелем, палладием и некоторыми другими металлами. [c.270]


    Описанный метод был применен для определения палладия в сплавах урана [833]. [c.168]

    Из группы платиновых металлов находят применение платина, родий, иридий и. палладий. Меры предосторожности, необходимые при работе с платиной, общеизвестны о них можно справиться в изданиях фирм, производящих благородные металлы (см. часть П, гл. 29). Родий применяется большей частью в виде сплавов (например, в термоэлементах, нагревательных элементах). При условии принятия особых мер защиты от окисления кислородом воздуха он используется и в чистом виде как материал тиглей для работы при особо высоких температурах. Иридий имеет значительно олее высокую температуру плавления и более низкое давление пара, чем платина. Однако в кислородсодержащей атмосфере оба металла улетучиваются значительно с большей скоростью, чем это соответствует их собственному давлению пара, причем при сравнимых условиях потери иридия значительно больше, чем платины. Все же в особых случаях иридий применяют как материал сосудов для нагревания сильноосновных оксидов, таких, как ВаО, в кислородсодержащей атмосфере. К примеру, из иридия изготовлялись сосуды в виде желоба, нагреваемого непосредственным пропусканием электрического тока [2]. Платино-иридиевые сплавы при достаточном содержании иридия устойчивы к действию хлора. Палладий дешевле платины, он применяется в основном как составная часть сплавов. Высокую п))0-ницаемость палладия для водорода при температуре красного каления используют при получении особо чистого водорода (см. часть П, гл. 1). [c.35]

    Вновь подтверждена возможность применения метода адсорбционно-химического равновесия. для получения теплот адсорбции при низких поверхностных концентрациях, когда энергетические свойства поверхности определяются обычно наиболее активными центрами. В данном случае применение этого метода к хемосорбции кислорода на палладии и палладий-серебряных сплавах показало, как различие в сродстве поверхностей этих двух металлов к кислороду влияет на термодинамику адсорбции на сплаве. Это поведение дало экспериментальное подтверждение предположения о том, что при хемосорбции кислорода на переходных металлах of-электроны не принимают прямого участия в образовании связей. [c.489]

    Примером использования золота в химической промышленности является применение сплава, содержащего 30 /о Р1, для изготовления фильеров, употребляемых при производстве искусственного шелка. Сплав с 20 /о Рс1 имеет ограниченное применение для этой же цели. Считается, что тройной сплав из золота, платины и палладия более пригоден, чем двойные сплавы. В последние годы практикуется замена фильеров из сплавов на золотой основе фильерами из сплавов с высоким содержанием платины. [c.343]

    Соляная кислота отличается высокой агрессивностью по отношению к большинству металлов и сплавов. Реальное применение для изготовления оборудования и деталей оборудования, подвергающихся воздействию соляной кислоты, находят лишь титан и его сплавы, никель и его сплавы, тантал и молибден, а также кремнистый чугун. Нелегированный титан обладает ограниченной стойкостью в кислоте даже при комнатной температуре (рис. 7-3) 261]]. Наличие в растворе окислителей (в частности, растворенного хлора) расширяет пределы применимости титана в соляной кислоте. Хорошей стойкостью обладает легированный палладием (0,2 масс.%) или молибденом (30 масс.%) титан. [c.103]

    Аналогичные системы нашли практическое применение в других нефтехимических процессах, таких как изомеризация 5], гидрокрекинг [6] и гидрогенизация [7]. Исследования биметаллических катализаторов в нефтехимии привели к усовершенствованию катализаторов синтеза винилацетата (палладий — золото) [8] и получению более селективных катализаторов неполного окисления олефинов (например, серебро — золото, медь — золото) [9, 10]. Однако исследования пока еще не охватили нанесенные сплавы (например, платина — кобальт), которые обладают увеличенной термостабильностью и стойкостью к спеканию. Селективность по конечному продукту — критериальный параметр, который в настоящее время может быть оптимизирован для многих процессов путем использования полиметаллических систем. Например, в процессах дегидроциклизации [12] и гидрирования ароматических соединений [13] можно затормозить реакции крекинга (гидрогенолиза) и максимально увеличить выход желаемых продуктов при сохранении очень высокой гидрогенизационной активности. [c.19]

    Окисление азота аммиака в окислы Сплав платины с 10% родия палладий обладает хорошей каталитической активностью в чистом виде, а также и в сплавах, но скоро становится ломким применение платиновых металлов на носителях, а также на тугоплавких металлах дает неудовлетворительные результаты 1584 [c.162]

    Наибольшее применение имеют хром, платина и палладий. Для исследования элементов структуры размером порядка 200 A и больше используют хром. Для выявления наиболее тонких деталей поверхности и для предварительного оттенения реплик лучшие результаты были получены нри напылении платины или ее сплавов с палладием. Высокое качество оттенения зависит не только от правильного выбора оттеняющего металла, но и от условий проведения оттенения. Давление в вакуумной установке не должно превышать 10" мм рт. ст., так как минимальное рассеивание пучка частиц оттеняющего металла, а следовательно, и резкость теней может быть достигнута лишь при высоком вакууме. Угол оттенения может быть различным в зависимости от характера исследуемой поверхности. При очень тонком рельефе поверхности объекта угол может составлять 20° и меньше для грубого рельефа выбирают уг л 30—40°. Расстояние между испарителем и объектом должно быть не меньше 8—10 см. [c.188]


    Сплавы металлов переходной группы. Переходные металлы и их сплавы были также исследованы с этой точки зрения. Хорошо известна активность этих металлов при хемосорбции и катализе, в особенности для процессов с участием водорода. Эти факты пытались объяснить, исходя из современной теории металлов. Применение теории свободных электронов привело к выводу, что переходные металлы обладают узкой d-зоной, которую перекрывает широкая s-зона [55]. Предполагают, что в меди d-зона полностью заполнена электронами, а в таких переходных металлах, как железо, кобальт, никель и палладий эта зона заполнена не полностью. Для никеля и палладия число дырок в d-зоне в среднем составляет 0,6 на [c.520]

    В качестве катодных присадок для повышения пассивируемости титана и его сплавов могут быть использованы различные электроположительные металлы (палладий, платина, рутений и ряд других металлов платиновой группы), а в некоторых условиях даже и менее благородные металлы — Ке, Си, N1, Мо, и др.) Дальнейшее исследование возможности увеличения пассивируемости сплавов применением в качестве активных катодных центров некоторых интерметаллидов и таких соединений как карбиды, нитриды, силициды [2, 97] для повышения пассивации титана может привести также к интересным и важным результатам. [c.126]

    Применение. Сплавы на основе Ц. нашли широкое применение в ядерной энергетике для элементов конструкции активной зоны ядерных реакторов на тепловых нейтронах — оболочек тепловыделяющих элементов (твэлов), каналов, кассет, активационных решеток. В сплавы на основе Ц. входят также N5, 8п, ре, Сг, N1, Со и Мо, а Ц. является компонентом ряда сплавов на основе Mg, Т1, N1, Но, ЫЬ и других металлов, служащих в качестве конструкционных материалов для летательных аппаратов, для изготовления обмоток сверхпроводящих магнитов. На основе оксида Ц. или циркона изготовляют, цирконистые огнеупоры для сталелитейной и алюминиевой промышленности, для плавки платины, палладия и других металлов, для футеровки высокотемпературных печей, высокотемпературной изоляции. Ц. используется для изготовления пьезокерамических материалов. В химическом машиностроении Ц, применяется в качестве коррозионностойкого материала. Присадки Ц. служат для раскисления стали и удаления из нее серы, порошкообразный Ц. применяется в пиротехнике, производстве боеприпасов (трассирующие пули, детонаторы), сульфат Ц. употребляется в качестве дубителя в кожевенной промышленности. Подробную сводку о производстве, применении Ц. и его минерально-сырьевых ресурсах в начале 60 гг. см. у Каганович. [c.447]

    Кожухотрубный теплообменник из титана испытывался в 10%-нОй Н2504 при температуре от 47 до 75° в течение двух лет. За этот период не замечено утонения титановых труб. Для предотвращения щелевой коррозии был проведен ряд конструктивных мероприятий, а также применен сплав титана с 0,2% палладия для изготовления трубной решетки [150]. [c.130]

    Мембраны. Первые инженерные разработки по извлечению водорода с помощью металлических мембран на основе сплзеов палладия начаты 15—20 лет назад. Процесс выделения водорода предлагали проводить при температурах от 673 до 900 К в одну 19] или две ступени [10, II]. Степень регенерации водорода достигает 90% (одноступенчатое разделение при давлении исходного газа 15 МПа и давлении пермеата 0,2—0,3 МПа) и 98,5% при двухстадийном процессе (давление в напорном канале до 45 МПа, давление пермеата I ступени — 3—7 МПа, II ступени — атмосферное). Одно из достоинств металлических мембран — возможность получения водорода, практически не содержащего примесей. Так, применение мембран на основе сплава палладия с серебром в установках каскадного типа английской фирмы Джонсон Маттей Металс [12] позволило получить пермеат, содержащий 99,99995% (о б.) Иг- Отметим, что для. .этого необходимо, чтобы концентрация водорода в исходной смеси была не менее 99% (об.) Н2. Процесс проводится при температуре 550— 600 К под давлением х2, МПа. Производительность установки от 14 до 56 м ч высококонцентрированного водорода. Однако в промышленности металлические мембраны на основе палладия и его сплавов используются редко, в основном из-за дефицитности и высокой стоимости мембран, необратимого отравления палладия, необходимости поддержания высоких температ ур. [c.272]

    Так, альфа-железо (см. Железо) более проницаемо для водорода, чем гамма-железо. При десорбции из железа водорода с помощью вакуу-мирования или с понижением т ры газ выделяется в чистом виде. Алюминий и медь также проницаемы для водорода. При производстве изделий из алюминия водяной пар, адсорбированный (см. Адсорбция) на его окисленной поверхности, является источником дополнительного количества водорода, проникаюш,е-го в металл при термической обработке и термомеханической обработке. Большой водородопроницаемос-тью отличаются палладий и его сплавы, используемые для получения сверхчистого водорода. Материалы, непроницаемые для газов, служат для герметизации стенок, соединений и внутренних объемов аппаратов, машин и сооружений. Герметичность обеспечивается применением уплотнительных прокладок из асбеста, свинца и др. материалов. См. также Проницаемость материалов. [c.244]

    Для разделения изотопов водорода кроме микропористых можно применять сплошные металлические [100, 101] (палладий и его сплавы) или полимерные (силиконовый каучук, полиэти-лентерефталат, тетрафторэтилен, ацетат целлюлозы и т. д.) мембраны [99, 102, 103]. При этом проницаемость протия через подобные мембраны выше, чем дейтерия и трития. По сравнению с микропористыми и палладиевыми мембранами селективность полимерных непористых мембран ниже, но, учитывая, что они намного дешевле и не требуют применения высоких температур (а значит более выгодны с точки зрения затрат энергии), можно ожидать их широкого применения для разделения изотопов водорода. [c.315]

    Наряду с пленками из сплава палладия, которыми пользуются в интервале температур 200—700 °С, разрабатываются полимерные мембраны, пропускающие водород и задерживающие другие газы. В работах [37] описывается применение пучка пустотелых дакроно-вых полиэфирных волокон с наружным диаметром 36 мкм при внутреннем диаметре 18 мкм для выделения Нз из водородсодержащих тазов НПЗ. Пучок диаметром 300 мкм имеет около 32 млн. таких волокон. Газ входит в каналы волокон, водород же проходит через стенки и выводится из пространства между волокнами. [c.56]

    Окис. гоиие аммиака производят па катализаторе, н качестве которого применяют сетки из сплавов платины с родием или палладием. Находят применение также пеплатиновые катализаторы на основе окислов железа с добавками кобальта и хрома. [c.235]

    Ряд работ выполнен по применению 1-(2-пиридилазо)-2-наф-тола (ПАН) в качестве экстракционного реагента в фотометрическом анализе. Определены константы распределения ПАН между водой и четыреххлористым углеродом (Ю4), между водой и хлороформом (105 4), а также константы кислотной диссоциации реагента (10 п>2). Установлен состав экстрагирующихся комплексов ПАН с марганцем, медью и цинком [57] и другими элементами. Выявлена оптимальная область рН образования и экстракции комплексов марганца, кадмия, ртути (II), галлия, железа и иттрия, составляющая 5—9 7—10 6—7,5 3,6—5 4—8 и 8,5—11,0 соответственно. Изучены оптические свойства экстрактов. Разработаны методики определения железа, марганца и никеля при их совместном присутствии [58], иридия и родия [59], иттрия в присутствии лантана и церия [58]. Предложена методика определения палладия в титановых сплавах [60]. Изучено отношение комплексов ПАН с редкоземельными элементами к различным органическим растворителям [61]. Имеются работы по применению 1-(2-пиридилазо)-резорцина, а также других пиридиновых азо-красителей в качестве экстракционных реагентов [62, 63]. [c.136]

    Как особенность водорода Н. нужно отметить способность его путем диффузии растворяться в металлах с образованием твердых растворов (их неправильно называют также сплавами). Так. палладий при комнатной температуре в форме компактного металла растворяет 600-кратньгй объем Нз в форме губчатой массы — 850-кратный, в форме суспендированной в воде палладиевой черни — 1200-кратный, в форме коллоидальных частиц — 3000-кратный. На этом основано применение палладия для поглощения водорода из газовой смеси. При накаливании палладия весь поглощенный водород выделяется. [c.615]

    ОТ радиоактивного криптона, извлечения гелия из природного газа и т. п. посредством непористых мембран-для выделения водорода из продувочных газов производства аммиака и др. (преимущественно металлические мембраны на основе сплавов палладия), для обогащения воздуха кислородом, регулирования газовой среды в камерах плодоовощехранилищ, извлечения водорода, аммиака и гелия из природных и технологических газов, разделения углеводородов. В перспективе возможно их применение для рекуперации оксидов серы из газовых выбросов. [c.333]

    За последние 20—25 лет спрос на платину увеличился в несколько раз и продолжает расти. До второй мировой войны более 50% платины использовалось в ювелирном деле. Из сплавов платины с золотом, палладием, серебром, медью делали оправы для бриллиантов, жемчуга, топазов... Мягкий белый цвет оиравы из платины усиливает игру камня, он кажется крупиео и изящнее, чем в оправе из золота или серебра. Однако ценнейшие технические свойства платииы сделали ее применение в ювелирном деле нерациональным. [c.225]

    Вещества ещё более высокоя моле лярко массы целесообразно гидрировать в жидкой фазе. Возможность вакого применения мембранных катализаторов в виде фольги или трубок из палладия и его сплавов показана ка примерах гидрогенизации хинонов в сооответствующие гидрохиноны. В качестве растворителей использовались бутанол и некоторые другие вещества. [c.217]

    Широкое применение при гидрировании кратных С==С-связей нашли сплавы меди с никелем, палладием, алюминием. В настоящее время считается признанным, что каталитическая и хемосорбционная активность в реакциях окислительновосстановительного типа связана с электронной конфигурацией переходных металлов, с незаполненностью их -уровней [291, 292]. При сплавлении переходных металлов с другими металлами, дающими твердые растворы, можно получить набор катализаторов, отличающихся электронной структурой. Например, медь и никель дают непрерывный ряд твердых растворов, в которых -зона никеля постепенно заполняется электронами меди, что должно изменять каталитическую активность. -Уровень никеля полностью заполняется при содержании меди 60%. В согласии с теорией Даудена можно ожидать, что при достижении этого критического состава активность сплава должна резко упасть. [c.98]

    Аналогичные опыты со сплавом титана, содержащего 0,2% Палладия, показали почти в четыре раза ббльщие потери от коррозии. Тем самым подтверждена целесообразность применения для теплообменников технического титана с анодной защитой. [c.154]

    Намного более высокой термо-э. д. с. и незначительной стоимостью отличается применимая до 1000° и выше паллаплат-термопара и другие подобные составные комбинации, как Н2 -элемент. В этом случае платину или (лучше) платину, легированную небольшим количеством родия (сплав 40 — положительный термоэлектрод), соединяют со сплавом золота, содержащим примерно 50% палладия и 5% платины сплав 32 ) [161]. Сплав 60% Rh и 40% 1г, который хорошо поддается обработке, вместе с чистым иридием можно применять в качестве термопары до 2000°. Эта комбинация имеет то преимущество, что ее совсем ничтожная термо-э. д. с. почти строго линейно зависит от температуры. Некоторые комбинации из металлов подгруппы платины используют при еще более высоких температурах, другие обладают более высокой термо-э. д. с., однако в узкой области применения. [c.104]

    Палладий [7, 241]—это серебристо-белый металл с равновесным потенциалом, менее положительным, чем у золота и платины, но положительнее, чем у серебра. Стандартный потенциал процесса Рс1 Рс1+++2е равен +0,987В. Техническое применение палладия пока довольно ограничено. В виде сплавов с родием, золотом или платиной применяется для изготовления неокисляющихся электрических контактов, термопар, фильер, в качестве нетускнеющих покрытий и др. В сплаве с платиной его используют для контактных сеток при окислении аммиака и лабораторной посуды. В медицине, зубопротезном и ювелирном деле довольно часто применяют сплавы на основе палладия. Во всех случаях, где химическая стойкость палладия достаточна, рекомендуется использовать палладий или его сплавы с платиной, так как палладий является наиболее доступным металлом платиновой группы. Палладий рекомендован как катодная присадка (0,1—0,3%), увеличивающая пассивацию и коррозионную стойкость титана, нержавеющих сталей и других сплавов. [c.322]


Смотреть страницы где упоминается термин Палладий применение сплавы: [c.49]    [c.61]    [c.61]    [c.672]    [c.187]    [c.328]    [c.188]    [c.353]    [c.231]    [c.398]    [c.330]    [c.353]    [c.76]    [c.262]    [c.433]    [c.240]    [c.79]   
Коррозия металлов Книга 1,2 (1952) -- [ c.366 , c.370 ]

Коррозия металлов Книга 2 (1952) -- [ c.366 , c.370 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий



© 2024 chem21.info Реклама на сайте