Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкоза в мышечных клетках

    Брожение является также жизненно важным процессом и для человеческого организма. Хотя в обычных условиях наши мышцы получают вполне достаточные количества кислорода, чтобы произошло окисление пирувата и образование АТР аэробным путем, бывают обстоятельства, когда поступление кислорода оказывается недостаточным. Например, при крайнем напряжении сил, когда уже весь запас кислорода израсходован, мышечные клетки образуют лактат путем брожения. Более того, в белых мышцах рыб или домашней птицы аэробный метаболизм относительно невелик, и основным конечным продуктом оказывается L-лактат. В организме человека есть такие ткани, которые слабо снабжаются кровью, например хрусталик и роговица глаза. В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется при сбраживании глюкозы в лактат. [c.345]


    Две первые стадии гликогенолиза обратны двум последним стадиям гликогенеза. Глюкоза поступает в кровь из печени, так как в печени содержится основное количество фосфорилазы — фермента, катализирующего гидролиз гликогена. В мышечных клетках гликоген не гидролизуется, так как содержание в них фосфорилазы очень незначительно. [c.328]

    Проследим еще раз путь глюкозы в организме глюкоза циркулирует в крови и накапливается в печени и мышечных клетках в виде гликогена. Гликоген печени может гидролизоваться для снабжения крови глюкозой, гликоген мышечных тканей не гидролизуется. [c.328]

    Гликолиз — анаэробное (происходящее в отсутствие кислорода) расщепление глюкозы или гликогена в мышечных клетках с образованием богатого энергией АТФ, пировиноградной кислоты и, вероятно, молочной кислоты по общим схемам  [c.328]

    Но помимо полного окисления глюкоза может расщепляться и другими путями. Так, мышечные клетки, сокращающиеся в анаэробных условиях, превращают глюкозу в молочную кислоту в процессе гликолиза (см. далее). [c.374]

    В основе представления об активном транспорте через мембрану лежит тот факт, что удаление какого-то одного вещества из клетки является движущей силой активного переноса других веществ. Так, активный перенос ионов Ма+ из клетки ( натриевый насос ) приводит к образованию градиента концентрации этих ионов, направленного внутрь клетки, который и обусловливает активный перенос ионов калия, глюкозы и аминокислот внутрь клетки. Если удаление ионов N3+ из клетки не компенсируется поступлением внутрь других ионов, по-видимому, происходит возникновение градиента электрического потенциала ( электро-генный насос ). Предполагают, что этот тип натриевого насоса является первичным механизмом при возникновении трансмембранного потенциала в мышечных клетках (обеспечение действия кальциевого насоса ) (см. стр. 430). Необходимо отметить, что все системы переноса через мембрану работают за счет энергии АТФ или других носителей энергии. [c.431]

    В мышцах расщепление гликогена обычно наблюдается при выполнении физической работы. Однако свободная глюкоза здесь не образуется, так как в мышечных клетках нет фермента, вызывающего гидролиз глюкозо-6-фосфата. Глюкозо-1-фосфат и глюкозо-6-фосфат из-за наличия фосфатного остатка через стенку мышечных клеток проходить не могут, поэтому все дальнейшие превращения этих соединений протекают непосредственно в мышцах и направлены на обеспечение их энергией. [c.46]


    По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью в ходе этого процесса идет глубокий распад окисляемых веществ до конечных продуктов - СОг и Н2О и поэтому выделяется большое количество энергии. Так, например, при аэробном окислении мышечного гликогена образуется 39 молекул АТФ в расчете на каждую отщепляемую от гликогена молекулу глюкозы, в то время как при анаэробном распаде этого углевода (гликолиз) синтезируется только 3 молекулы АТФ в расчете на одну молекулу глюкозы. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза АТФ окисляются все основные органические вещества организма аминокислоты (белки), углеводы, жирные кислоты, кетоновые тела и др. Еще одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы практически он функционирует постоянно в течение всей жизни. В покое скорость аэробного ресинтеза АТФ низкая, при физических нагрузках его мощность может стать максимальной. [c.138]

    Образующаяся глюкоза поступает в кровь и в дальнейшем используется в других органах и тканях. В мышцах из-за отсутствия глюкозо-6-фос-фатазы глюкозо-6-фосфат не гидролизуется, а используется в качестве источника энергии непосредственно в мышечных клетках, окисляясь аэробным или анаэробным путем. [c.402]

    По сравнению с процессами, протекающими в присутствии кислорода, брожение — эволюционно более ранняя, но энергетически менее выгодная форма извлечения энергии из питательных веществ. Процессы брожения сформировались у простейших организмов в те времена, когда атмосфера Земли не содержала кислорода. Постепенно доля брожения в энергетическом обмене уменьшалась за счет развития более эффективного аэробного пути образования энергии. К брожению способны животные, растения и многие микроорганизмы (дрожжевые грибы, бактерии). Брожение является также жизненно важным процессом и для человеческого организма. Когда поступление кислорода оказывается недостаточным, например при крайнем физическом напряжении, мышечные клетки образуют лактат путем брожения. Кроме того, в организме человека есть ткани, которые слабо снабжаются кровью и кислородом (хрусталик и роговица глаза). В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется путем сбраживания глюкозы в лактат. [c.409]

Рис. 51.12. Проникновение глюкозы в мышечные клетки. Рис. 51.12. Проникновение глюкозы в мышечные клетки.
    Инсулин способствует также проникновению в клетки аминокислот (особенно в мышечные клетки) и стимулирует перемещение К+, Са +, нуклеозидов и органического фосфата. Эти эффекты не зависят от влияния инсулина на поступление в клетку глюкозы. [c.256]

    В этой книге основное внимание уделено сложным биохимическим процессам (например, синтезу белков, мышечному сокращению), в том числе и различным метаболическим путям. Метаболический путь—это совокупность реакций, ответственных за синтез сложных соединений из более простых и за распад соединения до конечных продуктов. Тот или иной сложный биохимический процесс или метаболический путь иногда проявляется на уровне целого организма. Примером такого рода может служить сокращение мышц. Мы знаем, что глюкоза является источником энергии для человека и других животных, а это означает, что в организме человека она должна распадаться (подвергаться метаболизму) с выделением энергии. Однако для того, чтобы получить полное представление о том, каким образом происходит метаболизм глюкозы в клетке—а мы такого представления (в частности, о механизме регуляции) пока не имеем,—необходимо провести исследования на других уровнях. На рис. 2.3 представлены различные типы наблюдений и анализа, которые позволяют полностью охватить весь биохимический процесс, такой, например, как распад глюкозы и высвобождение энергии (этот процесс известен как гликолиз). Эта схема в общих чертах применима ко всем основным биохимическим процессам, обсуждаемым в этой книге, и, таким образом, иллюстрирует общую стратегию изучения биохимических процессов об этом следует помнить, рассматривая любой биохимический процесс (гликолиз, окисление жирных кислот и т.д.). [c.18]

    Облегченный транспорт относится к процессам, в которы.х соединение движется через мембрану только по определенным путям посредством способных к насыщению механизмов, не требующих непременного снабжения энергией за счет АТР или равноценного источника. Таким процессом является вход глюкозы в гепатоциты, эритроциты и мышечные клетки по концентрационному градиенту. [c.376]


    Активный транспорт ионов Ма" " и К" имеет большое физиологическое значение, поскольку благодаря ему генерируется электрический потенциал на плазматической мембране, что регулирует электрическую возбудимость нервных и мышечных клеток, а также обеспечивается активный транспорт глюкозы и аминокислот в клетки организма, в том числе при их всасывании в кишечнике. Активный транспорт глюкозы в клетки осуществляется за счет градиента Ма . Натрий поступает в клетку и способствует проникновению глюкозы (см. рис. 30). [c.80]

    Впервые с АМР-зависимое фосфорилирование белков было выявлено при изучении метаболизма гликогена в клетках скелетных мышц. Гликоген - это основная резервная форма глюкозы как уже упоминалось, его распад в мышечных клетках регулируется адреналином (фактически адреналин регулирует как распад гликогена, так и его синтез в скелетной мускулатуре). Если, например, животное подвергнуть стрессу (испугать и т. п.), то надпочечники начнут выбрасывать адреналин в кровь, и это будет приводить различные ткани организма в состояние готовности . Циркулирующий в крови адреналин вызывает, в частности, расщепление гликогена в мышечных клетках до глюкозо-1-фосфата и в то же время подавляет синтез нового гликогена. Глюкозо-1-фосфат превращается в глюкозо-6-фосфат, который затем окисляется в реакциях гликолиза с образованием АТР, обеспечивая энергию для интенсивной работы мышц. Таким способом адреналин подготавливает мышечные клетки к усиленной работе. [c.372]

    В живой клетке имеются многие тысячи разных веществ. Каждое из них в принципе может реагировать со многими другими. Однако фактически каждое вещество участвует в немногих реакциях, часто только в одной. Например, в мышечных клетках практически вся глюкоза реагирует только с АТФ, превращаясь в глюкозо-6-фосфат. Это происходит потому, что в этих клетках есть фермент, катализирующий реакцию образования глюкозо-6-фосфата ферментов, которые катализировали бы другие в принципе возможные реакции глюкозы, в мышцах нет, а некатализируемые реакции протекают настолько медленно, что практически не оказывают влияния на баланс глюкозы. Глюкозо-6-фосфат затем превращается в другой метаболит, тоже при участии специального фермента, и т. д. Таким образом, получается определенная последовательность реакций и метаболитов — метаболический путь глюкозы. Каждый метаболит образуется из предшественника при участии специфического фермента и, в свою очередь, служит субстратом для следующего фермента. Аналогично и другие вещества превращаются по характерным для них метаболическим путям. Метаболические пути всех веществ связаны друг с другом общими метаболитами, образуя единую сетку реакций. [c.91]

    Мышцы. Основные источники энергии в мышцах-глюкоза, жирные кислоты и кетоновые тела. Мышцы отличаются от мозга большим запасом гликогена (1200 ккал). Около трех четвертых всего гликогена организма находится в мышцах (табл. 23.1). Содержание гликогена в мышцах после еды может достигать 1%. Этот гликоген легко превращается в глюкозо-б-фосфат для последующего использования в мышечных клетках. В мышцах, как и в мозгу, глюкозо-б-фосфатазы нет, в связи с чем экспорта глюкозы из этих клеток не происходит. Вместо этого мышцы задерживают глюкозу, которую они предпочитают другим источникам энергии в периоды повышенной активности, В активно сокращающихся скелетных мышцах скорость гликолиза сильно превосходит скорость цикла трикарбоновых кислот. Пируват, образующийся в этих условиях, большей частью восстанавливается до лактата. Лактат переходит в печень, где он превращается в глюкозу. В результате этих превращений, называемых циклом Кори (разд, 15.21), часть метаболических отходов мышц перемещается в печень. Кроме того, в активно работающей мышце образуется большое количество аланина в результате трансаминирования пирувата. Подобно лактату, аланин может превращаться в печени в глюкозу. Совершенно иначе организован метаболизм покоящейся мышцы. В ней основным источником энергии служат жирные кислоты. Источником энергии для сердечной мышцы могут служить также кетоновые тела. Более того, сердечная мыш ца предпочитает ацетоацетат глюкозе. [c.289]

    В настоящее время явления кетонемии и кетонурии при сахарном диабете или голодании можно объяснить следующим образом. И диабет, и голодание сопровождаются резким сокращением запасов гликогена в печени. Многие ткани и органы, в частности мышечная ткань, находятся в состоянии энергетического голода (при недостатке инсулина глюкоза не может с достаточной скоростью поступать в клетку). В этой ситуации благодаря возбуждению метаболических центров в ЦНС импульсами с хеморецепторов клеток, испытывающих энергетический голод, резко усиливаются липолиз и мобилизация большого количества жирных кислот из жировых депо в печень. В печени происходит интенсивное образование кетоновых тел. Образующиеся в необычно большом количестве кетоновые тела (ацетоуксусная и -гидроксимасляная кислоты) с током крови транспортируются из печени к периферическим тканям. Периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой концентрации кетоновых тел в притекающей крови мышцы и другие органы не справляются с их окислением и как следствие возникает кетонемия. [c.405]

    Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Клетки животных не содержат ферментных систем, катализирующих синтез углеродных скелетов этих аминокислот. В то же время организм может нормально развиваться исключительно при белковом питании, что также свидетельствует о возможности синтеза углеводов из белков. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Он доказан прямым путем в опытах на животных с экспериментальным диабетом более 50% введенного белка превращается в глюкозу. Как известно, при диабете организм теряет способность утилизировать глюкозу, и энергетические потребности покрываются за счет окисления аминокислот и жирных кислот. Доказано также, что исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Более того, имеются доказательства существования в организме своеобразного циклического процесса—глюкозо-аланинового цикла, участвующего в тонкой регуляции концентрации глюкозы в крови в тех условиях, когда в период между приемами пищи организм испытывает дефицит глюкозы. Источниками пирувата при этом являются указанные аминокислоты, образующиеся в мышцах при распаде белков и поступающие в печень, в которой они подвергаются дезаминированию. Образовавшийся аммиак в печени обезвреживается, участвуя в синтезе мочевины, которая выделяется из организма. Дефицит мышечных белков затем восполняется за счет поступления аминокислот пищи. [c.548]

    Биохимические функции. Глюкокортикоиды стимулируют катаболические процессы в организме, преимущественно в мышечной и жировой тканях. Новосинтезированные гормоны быстро секретируются в кровь и связываются со специфическим белком — транскортином. Образованный макромолеку-лярный комплекс переносится к клеткам-мишеням, где происходит его диссоциация и реализация действия гормонов. Глюкокортикоиды усиливают распад белков, повышают содержание аминокислот в крови и аминного азота в моче. Данные гормоны ингибируют синтез нуклеиновых кислот во всех тканях, кроме печени. Их действие на углеводный обмен проявляется прежде всего в увеличении глюкозы в крови за счет активации глюконеогенеза в печени. В липидном обмене глюкокортикоиды стимулируют интенсификацию липолиза, а также ингибируют синтез жирных кислот в печени. [c.159]

    Механизм действия и фармакодинамические эффекты. Бигуаниды повышают поглощение глюкозы мышечными клетками за счёт активации анаэробного гликолиза, поэтому под влиянием бигуанидов возрастает образование лактата и пирувата. Бигуаниды тормозят неоглюкогенез и гликогенолиз в печени, замедляют всасывание глюкозы в ЖКТ. Они ингиби руют липогенез и снижают содержание ТГ в плазме крови, способствуя нормализации жиро вого обмена у больных сахарным диабетом. Оказывая умеренное аноректическое действие они способствуют нормализации массы тела при ожирении. Активируя фибринолиз, бигуани ды уменьшают риск тромбоэмболических осложнений. Бигуаниды эффективны только тогда когда у пациента вырабатывается собственный инсулин. [c.402]

    Биохимические функции. Соматотропин контролирует синтез белка, влияя на транспорт аминоюгслот из крови в мышечные ткани. Кроме того, показано влияние СТГ на процессы транскрипции и образование зрелой РНК. Действие на липидный обмен проявляется в активации липаз за счет их фосфорилирования и, как следствие, в стимуляции липолиза. Отмечено многоплановое влияние СТГ на углеводный обмен. Активация глюконеогенеза, а также ингибирование транспорта глюкозы в клетки под действием этого гормона приводят к гипергликемии и повышенному синтезу гликогена. Соматотропин регулирует процессы роста всего организма. Гипофункция гипофиза, приводящая к снижению синтеза и секреции СТГ, является причиной пропорционального уменьшения роста всех органов человека и животных. [c.148]

    Гликогенолиз. Процесс образования печеночного гликогена обратим. Этот сильно разветвленный, крахмалоподобный полисахарид может быть гидролизован до глюкозы. Соответствующий процесс называется гуги/согенол зож ( гидролиз гликогена ). Глюкоза, образовавшаяся при гликогенолизе, попадает в кровяное русло и циркулирует по всему телу. Если в мышцах протекает гликолиз, то молекула глюкозы покидает кровяное русло, проникает в мышечную клетку и идет на образование свежего мышечного гликогена взамен того, который уже использовался. Таким путем [c.382]

    Метаболические пути. В живой клетке многие тысячи метаболитов вступают в химические реакции. Реакционная способность метаболитов зависит от ряда условий и прежде всего от наличия соответствующих ферментов. Так, например, в мышечных клетках вся глюкоза реагирует только с АТФ и превращается в глюкозо-6-фосфат. Другие реакции не идут, так как отсутствуют ферменты, а некатали-зируемые реакции крайне медленны. Образовавшийся глюкозо-6-фосфат является заряженным веществом и поэтому не может поки- [c.96]

    При спиртовом брожении в процессе расщепления одной молекулы глюкозы образуется четыре молекулы АТФ (50 ккал, или 210 кдж). Из них две расходуются на функциональную деятельность и синтез. По расчетам некоторых авторов, при гликолизе и гликогенолизе в богатых энергией фосфорных связях аккумулируется 35—40 /о всей освобождающейся свободной энергни, остальные 60—65% рассеиваются в виде теплоты. Коэффициент полезного действия клеток, органов, работающих в анаэробных условиях, не превышает 0,4 (в аэробных 0,5). Эти расчеты основаны главны.м образом на данных, полученных на мышечных экстрактах и дрожжевом соке. В условиях живого организма мышечные клетки, органы и ткани утилизируют энергию, вероятно, значительно больше. С физиологической точки зрения процесс гликогенолиза и гликолиза имеет исключительно важное значение, особенно когда жизненные процессы осуществляются в условиях недостатка кислорода. Папример, при энергичной работе мышц, особенно в первой фазе деятельности, всегда наблюдается разрыв между доставкой кислорода в мышцы и его потребностью. В этом случае начальные энергетические затраты покрываются в значительной степени за счет гликогенолиза. Аналогичные явления наблюдаются при различных патологических состоя иях (гипоксия мозгз, сердца и т. п.). Кроме того, потенциальная энергия, заключенная в молочной кислоте, в конечном счете не теряется для высокоорганизованного организма. Образующаяся молочная кислота быстро пере.ходит из мышц в кровь и далее доставляется в печень, где снова превращается в гликоген. Анаэробный распад углеводов с образованием молочной кислоты очень распространен в природе он наблюдается не только в мышцах, но и в других тканях животного организма. [c.334]

    Мейергоф в начале 30-х годов впервые показал, что приведенная на фиг. 28 последовательность реакции брожения имеет гораздо более широкое биологическое значение, чем просто образование спирта дрожжами. Он открыл, что тот же самый процесс, за исключением лишь двух последних его стадий, происходит и в тканях мышц млекопитающих. Мышечные клетки получают химическую энергию, расщепляя глюкозу (которую они запасают в виде гликогена) до пировиноградной кислоты, что сопровождается одновременным образованием АТФ. Однако в мышечной ткани пировиноградная кислота превращается в конце концов в лактат (СНдСНОНСОО"), а не в этанол и СОд. Вскоре после того, как стали известны данные Мейергофа, было показано, что бактерии, содержащиеся в отсутствие воздуха, также превращают глюкозу в лактат в ходе той же последовательности реакций. Выло обнаружено, что эта цепь реакций, которая была названа гликолизом (от греч. гликис — сладкий и лизис — расщепление), или гликолитическим путем, служит одним из главных путей, по которым глюкоза включается в процессы клеточного метаболизма. [c.65]

    Впервые последовательность событий бьша выяснена при изучении метаболизма гликогена в клетках скелетной мускулатуры. Гликоген-это основная резервная форма глюкозы, его синтез и распад строго регулируются определенными гормонами. Если, например, животное испугать или подвергнуть иному стрессу, надпочечники секретируют в кровь адреналин, приводящий различные ткани тела в состояние готовности . Циркулирующий адреналин вызывает, в частности, расщепление гликогена в мьпиечных клетках до глюкозо-1-фосфата и в то же время прекращает синтез нового гликогена. Глюкозо-1-фосфат превращается в глюкозо-6-фосфат, который затем окисляется в реакциях гликолиза, что приводит к образованию АТР, необходимого для работы мьппц. Таким путем адреналин подготавливает мышечные клетки к усиленной работе. [c.271]

    Адреналин активирует аденилатциклазу в плазматической мембране мышечной клетки, и в результате этого в цитоплазме повьппается концентрация сАМР. Циклический АМР в свою очередь вызывает активацию сАМР-зависи-мой протеинкиназы, которая специфически фосфорилирует гликогенсинтазу-фермент, осуществляющий последний этап синтеза гликогена из глюкозы. Фосфорилирование гликогенсинтазы ведет к ее инактивации и тем самым прекращает синтез гликогена. Та же протеинкиназа фосфорилирует и другой фермент-киназу фосфорилазы, киназа при этом активируется и фосфорилирует еще один фермент, гликогенфосфорилазу, которая и отщепляет от гликогена остатки глюкозы. [c.271]

    Все рецепторы могут находиться как в плазматической мембране клетки, так и в мембранных везикулах в цитоплазме. Количество рецепторов 1, 2, 3 и 5 в плазматической мембране изменяется в узких пределах и не зависит от коцентрации инсулина. Напротив, ГЛЮТ-4 (и в гораздо меньшей мере ГЛЮТ-1) в отсутствие инсулина практически полностью находится в цитозольных везикулах. Стимуляция клеток инсулином приводит к перемеш,ению везикул к плазматической мембране и их слиянию, в результате чего рецепторы оказываются встроенными в плазматическую мембрану (рис. 9.4). При этом, как показано в экспериментах с жировыми и мышечными клетками, скорость потребления глюкозы увеличивается в 30-40 раз. При снижении концентрации инсулина в среде рецепторы вновь возвраш,аются в цитозоль. [c.252]

    Глюкозо-1-фосфат, образуюш,ийся из гликогена, при участии фосфоглюкомута-зы превраш,ается в глюкозо-6-фосфат, дальнейшая судьба которого в печени и в мышцах различна. В печени глюкозо-6-фосфат превраш,ается в глюкозу при участии глюкозо-6-фосфатазы, глюкоза выходит в кровь и используется в других органах и тканях. В мышцах нет этого фермента, поэтому глюкозо-6-фосфат используется здесь же, в мышечных клетках, распадаясь аэробным или анаэробным путем. [c.263]

    При кратковременных мышечных нагрузках основным поставш,иком энергии служит глюкоза, которая частью поступает в мышцы из крови, частью образуется (в форме глюкозо-1-фосфата) из гликогена, запасенного в самих мышечных клетках. Отметим, что 100 г гликогена могут обеспечить бег примерно в течение 15 мин. [c.272]

    На этой стадии глюколиз может завершаться двумя способами. В обоих случаях осуществление дальнейших превращений связано с более легким восстановлением NAD в NADH. Кофермент NAD присутствует в клетках в очень незначительных количествах, так что если гликолиз останавливается на стадии пировиноградной кислоты, то клетка быстро расходует NAD. Гликолиз в мышечных тканях регенерирует NAD из NADH путем восстановления пировиноградной кислоты в S-молочную кислоту, в то время как дрожжи превращают пировиноградную кислоту в этанол и диоксид углерода (разд. 19.1) и регенерируют NAD при восстановлении уксусного альдегида в этанол. Заметим, что суммарно оба процесса дают АТР в чистом виде и заключаются только в перегруппировке атомов глюкозы. Кроме того, оба превращения осуществляются без участия внешних окислителей. [c.279]

    Гормон инсулин секретируется р-клетками островков Лангерганса. Инсулин оказывает многостороннее действие на обмен веществ влияет на проницаемость клеточных мембран и утилизацию глюкозы в жировой и мышечной ткани, усиливает синтез жира и гликогена из глюкозы, замедляет окисление высших жирных кислот и тормозит глюконеогенез из аминокислот. Общим эффектом действия инсулина является понижение глюкозы в крови. Этот эффект можно легко воспроизвести в ойыте, если ввести подкожно инсулин подопытному животному, например кролику. [c.136]

    У разных организмов и в разных тканях гексокиназа представлена различными изоформами (разд. 9.23). Хотя все эти изоформы катализируют одну и ту же реакцию (рис. 15-3), они различаются между собой по своим кинетическим свойствам. Гексокиназа мышечных клеток характеризуется, например, низкой величиной Км для глюкозы (около ОД мМ), поэтому она фосфорилирует глюкозу крови (4-5 мМ). с максимальной скоростью. Мышечная гексокиназа резко ингибируется продуктом катализируемой ею реакции-глюкозо-6-фосфатом. Это обстоятельство наряду с некоторыми другими данными позволило сделать вывод, что гексокиназа вьшолняет в мышцах функцию регуляторного фермента. Глюкозо-6-фосфат является при этом одновременно и продуктом реакции, и аллостерическим ингибитором. Когда концентрация глюкозо-6-фосфата в клетке поднимается выше нормального уровня, он временно и обратимо ингибирует гексокиназу, так что скорость его образования приводится в соответствие со скоростью утилизации. [c.447]

    У дрожжей и у других микроорганизмов, сбраживающих глюкозу не до лактата, а до этанола и СО2, путь ферментативного расщепления глюкозы совпадает с описанным выше для анаэробного гликолиза на всем протяжении, за исключением этапа, катализируемого лактатде-гидрогеназой. В дрожжевых клетках, которые не содержат фермента, аналогичного лактатдегидрогеназе мышечной ткани, этот этап заменен двумя другими реакциями (рис. 15-17). В первой из них продукт расщепления глюкозы пируват теряет свою карбоксильную группу под действием пируватдекарбоксилазы. Эта реакция представляет собой простое декарбоксилирование реального окисления пирувата при этом не происходит  [c.468]


Смотреть страницы где упоминается термин Глюкоза в мышечных клетках: [c.345]    [c.346]    [c.372]    [c.62]    [c.187]    [c.145]    [c.346]    [c.376]    [c.272]    [c.411]    [c.322]    [c.386]   
Молекулярная генетика (1974) -- [ c.65 , c.66 ]




ПОИСК







© 2024 chem21.info Реклама на сайте