Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межклеточная вода

    Осмос имеет большое значение для растительных и животных организмов, способствуя достаточному обводнению клеток и межклеточных структур. Возникающее при этом осмотическое давление обеспечивает тургор клеток, т. е. их упругость. Наличие воды необходимо для нормального течения различных процессов. У клетки или оболочка, или прилегающая к ней плазмалемма обладают свойствами полупроницаемой мембраны. [c.145]


    Биологическое значение осмотического давления. Осмос имеет большое значение для растительных и животных организмов, способствуя достаточному оводнению клеток и межклеточных структур. Возникающее при этом осмотическое давление обусловливает тургор клеток, т. е. их своеобразную упругость, способствуя тем самым поддержанию эластичности тканей, сохранению определенной формы органами и т. п. Обилие воды в клетках и тканях необходимо для нормального течения многообразных физических и химических процессов гидратации и диссоциации веществ, реакций гидролиза, окисления и т. п. [c.25]

    Осмотическое давление в жидкостях организма (кровь, лимфа, межклеточная жидкость, спинномозговая жидкость и др.) выполняет важную физиологическую функцию, влияющую на распределение в тканях организма воды, солей и различных питательных веществ. Осмотическое давление указанных биологических жидкостей зависит главным образом от растворенных в них низкомолекулярных минеральных веществ, преимущественно хлористого натрия, но также от высокомолекулярных соединений, находящихся в коллоидном состоянии, главным образом белков. [c.227]

    Морозостойкость сельскохозяйственных культур обусловлена свойствами связанной воды. Ранее полагали, что растения погибают от пониженных температур в результате механических повреждений протоплазмы кристаллами образующегося льда. Однако исследования показали, что механизм действия низких температур на растение гораздо сложнее низкие температуры губительны для растений не сами по себе, а в результате их обезвоживающего действия при вымораживании воды. Микроскопические исследования показали, что на первой стадии замораживания кристаллы льда образуются не внутри клеток, а в межклеточных пространствах. Разрастающиеся кристаллы льда интенсивно оттягивают воду из клеток, что в конечном итоге приводит к обезвоживанию протоплазмы и резкому увеличению концентрации клеточного сока. Однако даже в полностью убитых морозом растениях клеточные стенки остаются практически неповрежденными. [c.334]

    Организмы животных и растений содержат от 50 до 90% воды. В организме человека она составляет около 65% от массы тела. Большая часть воды в организме находится внутри клеток (70%), около 23% составляет межклеточная вода, а остальная (7%) находится внутри кровеносных сосудов и в составе плазмы крови. Потеря организмом человека более 10% воды может привести к смерти. При продолжительности жизни 70 лет человек потребляет около 25 т воды. [c.737]


    Наконец, вода, как уже указывалось, находится и в свободном состоянии. Это вода плазмы крови, лимфы и других жидкостей организма и межклеточная вода. С помощью свободной воды к тканям и клеткам доставляются питательные вещества, и из клеток и тканей оттекают конечные продукты обмена веществ. [c.205]

    Ресуспендированные клетки можно также использовать для определения их сухого веса, что позволяет вычислить сухой вес отдельной клетки. Количество клеточной воды равно разности между сырым и сухим весом клетки. Поскольку вес или объем межклеточной воды известен, можно определить количество клеточной воды по количеству воды в осадке. [c.449]

    Двадцать из первых тридцати элементов периодической системы, а также четыре более тяжелых элемента необходимы для жизни. Водород, углерод, азот и кислород присутствуют в организме в виде многих соединений. Натрий, калий, магний, кальций и хлор присутствуют в виде ионов в крови и межклеточных жидкостях. Фосфор в виде фосфат-иона обнаружен в крови эфиры фосфорной кислоты содержатся в фосфолипидах и других соединениях гидроксиапатит содержится в тканях костей и зубов. Сера — важная составная часть инсулина и других белков. Фтор, содержащийся в виде фторид-иона в питьевой воде, необходим для образования прочных зубов и костей он необходим также для нормального роста крыс. Кремний, ванадий, хром, марганец, железо, кобальт, медь, цинк, селен, молибден, олово и иод в небольших количествах необходимы для жизни (микроэлементы). Сведения о некоторых из этих элементов были получены только в опытах с животными (особенно с крысами), однако весьма вероятно, что полученные данные относятся также и к человеку. [c.418]

    В древесине, кроме компонентов, образующих клеточную стенку, присутствуют и так называемые посторонние вещества, появляющиеся в результате жизнедеятельности дерева и его взаимодействия с окружающей средой. Они могут накапливаться в запасающих тканях в качестве резерва питательных веществ, откладываться на стенках клеток и пропитывать их, а у некоторых хвойных пород выделяются специальными паренхимными клетками в межклеточные каналы - смоляные ходы. Основная масса таких веществ извлекается из древесины не вступающими с ними в химическое взаимодействие нейтральными растворителями. Однако, часть посторонних веществ не растворяется в воде и органических растворителях (некоторые соли органических кислот, ряд минеральных соединений, кино-вещества эвкалипта, суберин коры и т.д.). [c.496]

    Связи цепей в кристаллитах пектинов сравнительно слабы и легко разрываются за счет гидратации моносахаридных остатков. Поэтому прочные гели образуются только при условии снижения термодинамической активности растворителя (воды) за счет растворения хорошо гидратируемых низкомолекулярных веществ (например, сахарозы). Образование пектиновых гелей в присутствии сахарозы есть физико-химическая основа ряда кондитерских производств, таких, как изготовление варенья, конфитюров, мармеладов и т. ц. В растительных же тканях пектиновые гели служат связующим межклеточным материалом и цементирующей основой клеточной стенки. [c.171]

    Для консервации мокрую археологическую древесину пропитывают веществами, замещающими воду в межклеточных пространствах. Древесина трудно поддается пропитке, несмотря на развитую капиллярно-по-ристую систему. Эффективность пропитки зависит от свойств пропиточного раствора (вязкости, полярности, поверхностного натяжения) и его способности сохранять гомогенность при изменении содержания воды. Если консервант растворим в органическом растворителе, не смешивающемся с водой, проводят постепенное замещение воды на переходные растворители (ацетон, этиловый спирт), которые далее замещают необходимым для введения консерванта растворителем. [c.120]

    Высушенные растительные материалы богаты гидрофильными компонентами, поэтому они гигроскопичны, хорошо смачиваются водой и в значительном количестве поглощают воду за счет набухания. Губчатая микроструктура и наличие большого количества тонких и тончайших трубок (сосудов) обусловливают капиллярные свойства большинства растительных материалов. При обливании их водой жидкость под воздействием капиллярных сил активно всасывается растительными тканями и через систему сосудов межклеточного пространства и пор [c.59]

    Рыхлые материалы, содержащие большое количество межклеточных пространств и состоящие из тонкостенных паренхиматозных клеток, легко проницаемы для воды и представляют собой относительно небольшие препятствия для извлечения их содержимого. Этими особенностями отличаются многие цветки, листья, травы. [c.61]

    Содержание воды в клетках достигает 65—80%. В протоплазме на каждую молекулу белка приходится около 1800 молекул воды, причем состав ее в клетках непрерывно обновляется. В зависимости от условий культивирования содержание воды в клетках может меняться. Часть воды находится в межклеточном пространстве, это внеклеточная вода, а часть воды находится в самих клетках. В свою очередь находящаяся в клетках вода может быть в свободном и в связанном с поверхностью макромолекул виде. [c.23]


    Нормальное функционирование клетки, т. е. обмен веществ, рост и размножение может происходить только тогда, когда в ней имеется достаточное количество воды и если клетки погружены в водную среду с растворенными в ней питательными веществами. При отделении клеток от питательной среды, например путем центрифугирования или фильтрования, обмен веществ продолжается до тех пор, пока в межклеточном пространстве имеется вода и в ней растворены питательные вещества. После их использования обмен веществ в клетках продолжается за счет клеточных резервов (углеводы, липиды) в том случае, есл 1 сохраняются оптимальные температура и реакция среды. Когда использованы и резервные вещества, начинается автолиз клеток— саморазрушение, в результате которого белки распадаются на аминокислоты и углерод аминокислот идет для энергетических нужд. [c.24]

    Вьщеленные индивидуальные гликозаминогликаны могут содержать смесь цепей различной длины (рис. 5.5). Гликозаминогликаны как основное скрепляющее вещество связаны со структурными компонентами костей и соединительной ткани. Их функция состоит также в удержании большой массы воды и в заполнении межклеточного пространства. Иными словами, гликозаминогликаны —основной компонент внеклеточного вещества—желатинообразного вещества, заполняющего межклеточное пространство тканей. Они также содержатся в больших количествах в синовиальной жидкости-это вязкий материал, окружающий суставы, который служит смазкой и амортизатором. [c.187]

    Как уже отмечалось выше, подразделение нецеллюлозных полисахаридов на гемицеллюлозы и водорастворимые полисахариды (водорастворимые высокомолекулярные экстрактивные вещества) в значительной мере условно. Некоторые полисахариды и полиурониды, такие как крахмал в паренхимных клетках, камеди в межклеточных каналах и т.п., не входят в состав клеточных стенок, выполняют запасающие или защитные функции и извлекаются из древесины водой. Другие водорастворимые полисахариды, например, арабиногалактан могут содержаться в клеточных стенках, но извлекаются из них горячей водой. Пектиновые вещества, образующиеся на стадии деления клеток камбия, выполняют структурообразующую функцию и впоследствии входят в состав сложной срединной пластинки. Часть подобных полисахаридов и полиуронидов оказывается менее доступной и требует для растворения особых условий, например действия разбавленных растворов щелочи малой концентрации. Для полного извлечения пектиновых веществ приходится использовать растворы оксалата или цитрата аммония (см. 11.9.2). [c.310]

    Почему JNa" изгоняется из клетки, а в ней остается в избыточной концентрации Это вопрос эволюционный. Первые клетки возникали, по-видимому, в морской воде (см. 17.1) и состав межклеточной среды, например плазмы крови, близок к составу морской воды. Для создания электрохимического потенциала на клеточной мембране, необходимого для ряда биологических функций за счет избытка Na" внутри клетки потребовались бы концентрации Na" в клетке порядка нескольких молей на 1 л. Наоборот, количество в среде, в морской воде, настолько мало, что необходимый потенциал получается при внутриклеточных концентрациях, на порядок меньших. [c.343]

    Клетки и межклеточные вещества представляют собой сложную гетерогенную систему, отдельные фазы которой содержат в качестве необходимого компонента воду. Водные растворы минеральных и органических веществ заполняют мельчайшие ячейки структур и составляют основу тканевых жидкостей. Главным депо воды в организме является соединительная ткань. [c.68]

    Наряду с водою гидратационной и водою иммобильной различают еще воду свободную. Жидкости организма плазма крови, лимфа, спинномозговая жидкость, пищеварительные соки, моча содержат свободную воду. Свободная вода содержится и в межклеточных пространствах тканей (межклеточная вода), но количество ее настолько невелико, что она не вытекает ири разрезе ткани вода удерживается между клетками силами капиллярности. Количество межклеточной воды значительно возрастает при патолсгических условиях, особенно, при болезнях почек, когда почки оказываются неспособными удалять избыток воды из организма. В этих случаях веда накапливается в подкожной клетчатке, в мышцах и в иных органах, что вызывает явление, именуемое отеком. Накопление свободной воды в организме (отеки) имеет также место при глубоких нарушениях функции сердечно-сосудистой системы. Нри отеках в организме человека накопляется много литров свободной воды. Из отечной мышцы вода вытекает при погружении в нее тонкой металлической трубки. Отечные органы теряют свою эластичность, становятся мягкими, тестообразными. При надавливании пальцами иа отечную кожу остается углубление, которое медленно расходится. [c.204]

    Вода в организмах живых существ не только выполняет транспортную функцию Е1 смысле доставки к тканям и клеткам питательных веществ и к выделительным органам конечных продуктов обмена веществ. Вода, кроме того, в известной мере используется в процессах обмена, в результате чего она появляется в органических веществах — составных частях организма. Включение воды в органические вещества в большом масштабе имеет место у зеленых растений, у которых при использовании солнечно11 энергии из воды, углекислого газа и минеральных азотистых веществ синтезируются углеводы, белки, липиды и иные органические вещества. Для выяснения степени участия воды в синтезе органических веществ в организме человека и в организме животных недостаточно изучения водного баланса, т. е. соотношения количества воды, поступающей в организм, и количества воды, из него выделяющейся. Для этого необходимы иные гюдходы. Одним из таких подходов является введение в организм наряду с обычной водой небольшого количества тяжелой воды ОгО (О —дейтерий, тяжелый водород). Введенная в организм тяжелая вода быстро перемешивается со свободной межклеточной водой и водою жидкостей организма. Одновременно с этим значите,льная часть дейтерия тяжелой воды появляется в составе сложных органических веществ, например в высокомолекулярных жирных клслотах и иных веществах. [c.206]

    Поступление воды в организм регулируется чувством жажды. Уже при первых признаках сгущения крови в результате рефлекторного возбуждения определенных участков коры головного мозга возникает жажда — стре.мле-ние к нитью. При потреблении даже больиюго количества воды, например одновременно 1,5 л, кровь не обогащается-водою, ие разжижается. Объясняется это тем, что вода из крови быстро поступает в межклеточные пространства и увеличивается количество межклеточной воды. Всосавшаяся в кровь и отчасти в лимфу из кишечника вода в значительной части поступает в кожу и на некоторое время там задерживается. С этой точки зрения, [c.206]

    Устранение избыточного количества солей из организма почками происходит настолько интенсивно, что в опытах с введением в кровь животных даже значительных количеств солей, осмотическое давление плазмы изменяется мало и уже через короткий срок возвращается к норме. Введение в кровь минеральной соли приводит к поступлению в кровь межклеточной воды, что снижает в ней концентрацию соли. Затем избыток воды и соли удаляются почками. Снижение содержания в тканях воды, рефлек-торно действуя на нервные центры, вызывает жал<ду, усиливается поступление в организм воды в виде питья, и водносолевой баланс организма восстанавливается до обычного уровня. Подобное явление имеет место при потреблении с пищей большого количества поваренной соли. [c.211]

    Иногда можно избежать необходимости промывания клеток, центрифугируя их через слой жидких силиконов, как описано Гурвицем и др. [17]. Клетки проходят через силикон и образуют осадок, не содержащий межклеточной воды. Немного воды может остаться на поверхности клеток, и вода клеточных стенок также не удаляется. [c.453]

    Мембранные рецепторные молекулы — белки, гликонротепды и др.— участвуют в важнейших биологических явлениях. О формировании иммунитета рассказано в 4,8 и 17.11. Межклеточные взаимодействия, ответственные за морфогенез (см. 17.10), осуществляются посредством молекулярных, химических сигналов. Это доказывается прямыми опытами, в которых взаимодействие клеток нарушалось введением между ними кусочка целлофана. При замене целлофана агаром взаимодействие восстанавливалось. Давно было показано, что разделенные клетки губки объединяются вновь при помещении в морскую воду, причем образуются вполне сформированные маленькие губки. Регенерация оказывается видоспецифической. Очевидно, что узнавание, приводящее к упорядочению клеток, требует молекулярной сигнализации, контакта и адгезии клеточных поверхностей. [c.358]

    Для разрушения целого зерна требуются значительные механические усилия. На размол в дерть 1 т зерна нужно затратить в среднем 70—90 кДж электроэнергии, при этом еще не все клетки будут вскрыты, в связи с чем уменьшение прочности сырья является одной из задач подваривания. Вода, проникающая внутрь зерна, вызывает набухание крахмала и клеточных стенок, растворяет некоторые межклеточные вещества, отчего сцепление отдельных составных частей зерна ослабевает. Благодаря этому оно становится мягким и гибким. По данным Л. Н. Маравина, для сжатия кукурузного зерна до состояния лепестка толщиной 3 мм необходимо давление 3,9 МПа, а после подваривания при 100°С в течение 3 ч — всего 0,26 МПа. [c.72]

    Автор установила, что изменение объема води ,1х сред происходит за счет резкого повышения сосудисто-соедп-нительноткапнон проницаемости, выхода за пределы сосудистого русла белка, особенно его высокодисперсных фракций. Потеря плазмой белка и выход его в межклеточное пространство приводит к нарушению онкоти-ческого равновесия ио обе стороны сосудистой стенки, а уменьшение онкотического давления плазмы— к поте- [c.14]

    БАЛЬЗАМЫ (от греч. balsamon-ароматическая смола), р-ры прир. смол в сопутствующих им эфирных маслах. Б. накапливаются в растениях, гл. обр. в особых межклеточных вместилищах или ходах коры. Добывают Б, как правило, подсочкой (нанесение спец. надрезов на стволы деревьев в период вегетации). В состав Б обычно входят ароматичные соед. (ванилин, коричная и бензойная к-ты, их сложные эфиры, альдегиды, кетоны, спирты). Б,-вязкие жидкости на воздухе постепенно твердеют из-за испарения эфирного масла и окисления обладают горьким острым вкусом и кислой р-цией, практически нерастворимы в воде, [c.239]

    Минер, обмен. Под минер, обменом понимают процессы усвоения, превращ. и выведения организмом неорг. в-в. Поскольку такие неорг. в-ва, как вода, СОг, фосфаты, сульфаты, иод и др., включаются при О.в. в орг. соед., между орг. и минер, обменами четкая граница отсутствует. Наиб. уд. вес в минер, обмене занимает водно-солевой обмен, в к-ром принимают участие катионы (Ка , К" , Са " , Mg ) и анионы (СГ, НРО , НСО , 80 ). В результате активного трансмембранного переноса ионы Ка непрерывно удаляются из клеток в межклеточную среду, а замещающие их ионы концентрируются внутри клеток. Ионы Са у животных участвуют в проведении нервного импульса, поэтому постоянство их концентрации в организме имеет существ, значение для нормального функционирования нервной системы. У позвоночных животных Са и фосфат [c.316]

    Процессы, связанные с реставрацией объектов или предметов из дерева, имеют несколько направлений очистка поверхности, в случае мокрой древесины — обезвоживание или замещение воды, антисепти-рование, огнезащитная обработка, глубинная пропитка консервантами, защитная и декоративная обработка поверхности. При этом используются растворы консервантов в воде или органических растворителях. Количество поглощенного консерванта зависит от степени разрушенности древесины и свойств поглощаемого материала. При поглощении растворов полимеров наблюдается постепенное проникновение раствора в структурные элементы древесины, причем полимер отстает от фронта растворителя. После завершения пропитки происходит перераспределение полимера между раствором в межклеточном пространстве и структурными элементами древесины - древесина постепенно обогащается более высокомолекулярными фракциями полимера, что положительно сказывается на физико-механических свойствах образующегося композита. Это определяет желательность длительной пропитки древесины с целью более глубокого проникновения консервантов в структуру древесины. [c.110]

    Экстрактивные вещества - вещества, которые можно извлекать из древесины нейтральными полярными и неполярными растворителями (экстрагировать). Экстрактивные вещества не входят в состав клеточных стенок, а содержатся в полостях клеток или межклеточных каналах (смоляных ходах в древесине хвойных пород), но могут иногда пропитывать клеточную стенку. Несмотря на малую массовую долю в древесине (обычно до 3...4%), экстрактивные вещества чрезвычайно разнообразны (см. главу 14). По методу выделения их подразделяют на три группы летучие, или эфирные масла (летучие с паром) вещества, растворимые в органических растворителях (смолы) вещества, растворимые в воде (см. рис. 8.1). Экстрактивные вещества, за исключением водорастворимых полисахаридов и полиуронидов, представляют собой низкомолекулярные соединения (НМС). [c.185]

    В производстве древесно-волокнистых плит размол приводит к разрушению преимущественно межклеточного вещества и незначительному повреждению клеточных стенок. В результате образуется малофибриллированное древесное волокно, поверхность которого большей частью покрыта лигнином. Химический состав древесины определяет характер процессов, протекающих при последующем горячем прессовании, во всем объеме клеточной стенки. При повышенной температуре в присутствии воды и кислорода воздуха происходят термогидролитические превращения высокомолекулярных компонентов древесного комплекса, сопровождающиеся реакциями окисления Под термогидролнтическими превращениями понимают совместно происходящие реакции гидролитической и термической деструкции и конкурирующие реакции сшивания цепей. [c.225]

    Известно, что при продолжительной обработке кости в разведенных растворах кислот ее минеральные компоненты растворяются и остается гибкий мягкий органический остаток (органический матрикс), сохраняющий форму интактной кости. Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества-70% и вода-10%. В губчатой кости преобладают органические компоненты, которые составляют более 50%, на долю неорганических соединений приходится 33-40%. Количество воды сохраняется в тех же пределах, что и в компактной кости (Ю.С. Касавина, В.П. Торбенко). [c.673]

    Эффективность вещества, блокирующего проводимость нерва, зависит от его растворимости в аксональной мембране [24]. Но основным требованием, как показано на примере газов-анестетиков, является то, что они должны захватываться межклеточной средой и переноситься к нерву. Таким образом, они должны быть растворимы в воде. Обезболивающий эффект, достигаемый с помощью этих средств, определяется главным образом коэффициентом распределения данного вещества между плазмой и мембраной. Кроме того, важное значение имеет также размер молекулы. Большие молекулы, подобные хлор-промазину, блокируют мембрану при более низких концентрациях, чем в случае маленьких молекул, таких как этанол. И наконец, не последнюю, хотя и не совсем ясную роль играет диаметр нервного волокна волокна меньшего диаметра легче блокируются, чем более толстые. Поскольку волокна центральной нервной системы тоньше волокон периферической нервной системы, то при содержании этанола в сыворотке крови, равном 2%, организму обеспечено бессознательное состояние (общая анестезия), в то время как только при 4—5% этанола блокируются нервные импульсы периферических нервов (местная анестезия). [c.154]

    С образованием вторичной клеточной оболочки начинается процесс лигиификацип. Лигнификация сначала идет в первичной оболочке, затем в межклеточном слое и в дальнейшем во вторнч-иоГ оболочке. Лигнин заполняет пространство, ранее занятое водой, и превращает среду между фибриллами целлюлозы из вязкого геля в относительно твердое неэластичное вещество. При этом образуются химические и физические связи лигнина с ГМЦ (более подробно см. в 4-й главе этой книги). Но в процессе лигнифи-кации не все микропустоты заполняются лигнином. В оболочке существует система капилляров (преимущественно диаметром 5— 6 нм), благодаря которой она приобретает высокую проницаемость для водных растворов и низкомолекулярных веществ. Продвижение жидкостей от одной клетки к другой происходит через систему пор, т. е. в тех местах оболочки, где не образовалась вторичная оболочка. Предполагается, что в оболочку могут проникать частицы диаметром не более 12 нм [8, с. 38]. [c.33]

    Влажность осмола оказывает большое влияние на ход экс тракционного процесса Вода, заполняя полностью или ча стично трахеиды и межклеточные поры древесины, затрудняет смачивание и пропитку щепы гидрофобным органическим рас творителем (бензином) и, следовательно, мешает его проник новению в трахеиды и смоляные каналы В одинаковых уело ВИЯХ экстракции из сухого осмола бензином извлекается 88 % содержащейся в нем канифоли, а из сырого — только 72 /о С повышением температуры вязкость растворителя и смо листых веществ уменьшается Поскольку коэффициент диффу зии обратно пропорционален вязкости среды, это приводит к по вышению интенсивности диффузии и значительно ускоряет процесс экстракции в целом [c.235]

    Начальные стадии биохимических процессов, процессов разложения и окисления называются оторфянением. Эти процессы протекают в основном за счет наличия кислорода, входящего в состав клетчатки (целлюлозы), содержание которой в древесине доходит до 70%, и межклеточного вещества — лигнина. Наиболее легко разлагается клетчатка. Продукты ее разложения в значительной мере рассеиваются в виде выделившихся газов, или, растворяясь, уносятся почвенными водами. Из компонентов органического вещества многоклеточных растений лигнин наиболее стойкий к биохимическим реакциям, но весьма нестоек к окислительным процессам. В древесине лигнин содержится в количестве от 20 до 30%. [c.7]

    Второй тип исходного вещества образуется в заливах, озерах, лиманах, в застойных водоемах мелководных морей. Отмирающие микроскопические растительные н животные организмы, оседая на дно, образуют ил, состоящий преимущественно из органических веществ. Растительная часть исходного вещества состоит в основном из примитивных одноклеточных водорослей. Из-за отсутствия межклеточного вещества основным углеобразователем является жировое вещество, содержащееся в клетке, что ведет к значительному повышению содержания водорода в углях сапропелевого происхождения. Лигнина в нем обычно мало. Под водой при слабом доступе воздуха в условиях длительного воздействия микроорганизмов в этой органической массе протекали процессы углефикации. Первичное образование — гниющий ил (сапропел) представляет собой торфяную стадию сапропелитов. Дальнейшая углефикация приводит к образованию сапропелевых углей. Буроугольная стадия этих углей носит название богхедов. [c.8]


Смотреть страницы где упоминается термин Межклеточная вода: [c.46]    [c.198]    [c.29]    [c.294]    [c.244]    [c.106]    [c.69]    [c.183]   
Биохимия Издание 2 (1962) -- [ c.204 , c.206 ]




ПОИСК







© 2025 chem21.info Реклама на сайте