Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мешалка выбор

    При выборе типа мешалки и ее параметров учитывают требования процесс войства жидкости (вязкость, наличие осадков и др.). [c.226]

    Для перемешивания смеси продуктов и ускорения процессов омыления жировой основы и диспергирования загустителя в жидкой основе применяют пропеллерные, планетарные, винтовые и другие мешалки. Выбор системы перемешивания зависит от требуемой интенсивности перемешивания, вязкости смеси, системы подогрева и других факторов. Высокоскоростное перемешивание позволяет в несколько раз увеличить коэффициент теплопередачи по сравнению с обычным. Увеличение скорости перемешивания достигается применением мешалок со встречным движением лопастей. В некоторых случаях (аппараты большей емкости) в нижней части котла устанавливают дополнительные перемешивающие устройства, что значительно увеличивает скорость перемешивания и повышает экономический эффект на 30— 50%. [c.57]


    Для ускорения процессов омыления жиров и диспергирования загустителя в жидкой основе применяют пропеллерные, планетарные, винтовые и другие мешалки. Выбор системы перемешивания зависит от вязкости смеси, системы обогрева и других факторов. При получении в реакторе только мыльной основы используют аппараты с высокоскоростными мешалками (турбинными, пропеллер-ны ми и т. п.), в которых интенсивному перемешиванию подвергается суспензия небольшой вязкости. При совмещении в реакторе нескольких стадий (омыления, обезвоживания, образования расплава) вязкость системы резко возрастает, и в этом случае используют скребково-лопастные мешалки с регулируемой частотой вращения. Термическое диспергирование мыльного загустителя в дисперсионной среде можно осуществлять в аппарате типа Вота-тор , представляющем собой теплообменник труба в трубе , снабженный скребковым устройством, а также в трубчатом змеевиковом реакторе в них при турбулентном режиме течения смеси происходит быстрое образование однородного расплава. [c.369]

    После выбора оптимальной емкости [6] задача сво дится к выбору одного из типов стандартного аппарат данной емкости с мешалкой соответствующей конструк ции и определенной частоты вращения, а также с соот ветствующей конструкцией и размерами элементов обо грева реакторов объемного типа [12]. [c.12]

    Выбор числа оборотов мешалки. Число оборотов мешалки выбирают с учетом назначения процесса, типа и конструкции перемешивающего устройства. [c.252]

    Технологическая схема синтеза дифенилолпропана, выделения его из реакционной массы и очистки показана на рис. 8. Конденсацию фенола с ацетоном осуществляют в стальных эмалированных аппаратах 1 с мешалками (на схеме показан один). Температуру реакционной массы поддерживают в необходимых пределах, подавая воду в рубашку аппарата. Чрезвычайно важным является хорошее размешивание массы — иногда можно повысить выход дифенилолпропана только за счет интенсификации размешивания и правильного выбора конструкции мешалки. Обычно используют якорные мешалки с числом оборотов —70 в минуту. Для проведения синтеза непрерывным способом предложены реакторы горизонтального типа с винтообразными мешалками. [c.116]

    Расчет мешалок. Он заключается в определении потребляемой мощности, выборе двигателя, прочностном расчете мешалки и вала. [c.234]


    В литературе отмечается отсутствие универсального критерия, который позволил бы совершать выбор соответствующей мешалки для данного процесса. Поэтолгу прп выборе мешалки необходимо [ у-ководствоваться опытом, накопленным при паблюдепии за работой промышленных установок, а также опытных аппаратов. Такой т ыбор не будет, конечно, онтилгальным он часто не лишен субъективных факторов, нанример вследствие традиций, сложившихся в данной технологии. Важную роль при выборе мешалки играют физические параметры перемешиваемой жидкости и, прежде всего, вязкость. [c.47]

    Для выбора торцового уплотнения рассчитаем предварительно диаметр вала мешалки (см. стр. 245) [c.256]

    Первичное диспергирование газа происходит при подаче его под мешалку из отверстий кольцевого барботера. Расположение барботера относительно мешалки и их основные параметры приведены на рис. 9.8. При выборе размеров барботера, мешалки и их элементов можно ориентироваться на следующие соотношения Н, = = 0,25й 1г, = 0,25с( = 6 ,,. = [c.272]

    Трехкамерные осмометры. Принципиальная схема трехкамерных осмометров представлена на рис. 1-17. Особенностью таких осмометров является трудность уничтожения концентрационной поляризации. Чтобы ввести мешалку, требуется значительно усложнить конструкцию прибора. Трехкамерные осмометры имеют камеру 7 для измерения давления, наполненную инертной жидкостью. В этом случае большую трудность составляет выбор материала гибкой мембраны 6, которая является [c.43]

    ГОСТы, ОСТы или ведомственные нормали, определяющие стандартные ряды типового оборудования. В последнее время проводятся работы и по стандартизации гидродинамической структуры потоков в отдельных аппаратах (например, в реакторах с мешалками), что существенно сокращает время выбора необходимого оборудования. Выбор оптимальной конструкции аппарата и его типоразмеров является итерационной задачей и поэтому любая информация об эффективности в конкретных условиях эксплуатации лишь упростит процедуру расчета. [c.110]

    Таким образом, выбор типа выпарного аппарата зависит от свойств выпариваемых веществ, от требований процесса и уровня давления. Выпарной аппарат центробежного типа следует применять для чрезвычайно термочувствительных веществ, аппарат с механическими мешалками — для жидкостей с очень высокой вязкостью. [c.128]

    Поэтому выбор типа мешалки и ее параметров основывается на тщательном анализе опыта работы мешални в условиях, аналогичных [c.104]

    При выборе перемешивающих устройств следует отдавать предпочтение той мешалке, которая потребляет при определяющем числе оборотов о меньшую мощность. [c.354]

    РМС, свидетельствуют об ее уменьшении с ростом газосодержания или объема газа, вводимого в аппарат. Поэтому с точки зрения выбора привода мешалки эти сведения не имеют особой ценности, так как мощность должна быть рассчитана на условия перемешивания гомогенной жидкости. Энергозатраты на перемешивание газожидкостной смеси могут служить, например, мерой диссипации энергии для оценки динамической скорости и условий теплообмена [см. уравнения (II.23) и (11.38)1, в связи с чем рекомендации для расчета указанной мощности представляют определенный интерес. [c.123]

    Для гашения флюктуаций используются буферные сосуды с мешалками. Обычно устанавливают один или несколько сосудов, соединенных последовательно или параллельно, причем параллельно соединенные буферные сосуды эквивалентны одному большому сосуду, емкость которого равна сумме параллельно соединенных емкостей. Выбор числа параллельно соединенных сосудов определяется в основном возможностью обеспечения эффективного перемешивания. Применение одного буферного сосуда (или нескольких параллельных) рекомендуется, когда амплитуда и период флюктуаций велики. Последовательное соединение небольших буферных сосудов рекомендуется для гашения флюктуаций с малым периодом .  [c.42]

    Выбор шнековой мешалки для применения в любом процессе зависит от многочисленных параметров системы. Отношение диаметра шнека к диаметру аппарата, отношение шага шнека к его диаметру, число витков и глубина витка — все это влияет на характер перемешивания. Длина шнека обычно определяется условиями процесса, поскольку шнек должен располагаться между дном аппарата и поверхностью жидкости. [c.22]

    Широко распространены резервуары для суспензии, выточенные из нержавеющей стали. Он представляет собой стакан с крышкой, к которой приварены или присоединены на конической резьбе фитинги для присоединения колонки и подвода растворителя. Крышка может соединяться с корпусом при помощи прокладок из инертных пластмасс или мягких металлов либо на конусах. Крышка соединяется с корпусом и герметизируется затяжкой болтов или же с помощью резьбы. Такие резервуары иногда устраивают по типу автоклавов с магнитными или механическими мешалками. Мешалку используют для приготовления суспензии в резервуаре и для поддержания ее в стабильном состоянии в процессе упаковки колонки. Это позволяет избежать седиментации сорбента из маловязких растворителей в процессе набивки, повышает однородность набивки и упрощает выбор растворителя. [c.117]


    При окончательном выборе электродвигателя для проектируемой турбинной мешалки следует дополнительно учесть потери в подшипниках, сальниках, передаче и т. д. [c.111]

    Процесса поглощения органических загрязнений применяют механическое, гидравлическое или пневматическое перемешивание адсорбента с жидкостью. Разработано большое число реакторов с механическим перемешиванием. Выбор реактора определяется необходимым объемом аппарата, реологическими свойствами перемешиваемой среды и эффективностью использования того или иного типа перемешивающего устройства. Адсорбционная очистка сточных вод активными углями производится при относитель[ю невысоких концентрациях твердой фазы, поэтому, как показывает практика, целесообразно в этих условиях применение лопастных, турбинных или пропеллерных мешалок (рис. VI-32). Наиболее просты в конструктивном отношении лопастные мешалки, представляющие собой устройства из двух или большего числа лопастей прямоугольного сечения, закрепленных на вертикальном или наклонном валу. Такие мешалки вызывают преимущественно круговое вращательное движение жидкости в аппарате и создают незначительный осевой поток, который необходим для поддержания частиц адсорбента во взвешенном состоянии. По этой причине на стенках аппарата, в котором производится перемешивание лопастной мешалкой, устанавливают отражательные перегородки (рис. [c.175]

    По существу, задача выбора оборудования решается с самого начала разработки технологической схемы уже при выборе способа реализации процесса. Задав конструкцию аппарата, тем самым выбирают семейство аппаратов, отличающихся лишь геометрическими размерами. Гидродинамика потоков внутри аппарата, его эффективность определяются конструкционными особенностями. Поэтому этап выбора оборудования не может рассматриваться обособленно, без оценки гидродинамической обстановки, условий тепломассопереноса, гидравлических расчетов. Всякий раз при изменении геометрических размеров аппарата возникает необходимость повторения указанных расчетов, поскольку меняются параметры, определяющие его эффективность (например, скорость движения фаз, продольное перемешивание и т. п.). Основой для выбора оборудования обычно являются ГОСТы, ОСТы или ведомственные нормали, определяющие стандартные ряды типового оборудования. В последнее Е ремя проводятся работы и по стандартизации гидродинами-ч[еской структуры потоков в отдельных аппаратах (например, в реакторах с мешалками), что существенно сокращает время вы-б>ора необходимого оборудования. Выбор оптимальной кон-с трукции аппарата и его типоразмеров является итерационной задачей и поэтому любая информация об эффективности в конкретных условиях эксплуатации лишь упростит процедуру расчета. [c.63]

    Из (133) следует, что даже незначительное увеличение частоты вращения или диаметра мешалки приводит к резкому повышеник> потребляемой мощности. Установка вертикальной трубы диаметром 50 мм увеличивает мощность на 10—20%. Установка отражательных перегородок в несколько раз увеличивает потребляемую мощность турбинных и пропеллерных мешалок. Влияние внутренних устройств учитывается соответствующим выбором коэффициента Ки или введением дополнительных повышающих коэффициентов. Мощность двигателя (кВт) [c.235]

    Для механического разрушения пен в промышленности используют вращающиеся с большой частотой (около 3000 мин ) мешалки, крыльчатки и другие приспособления. Существуют устройства, в которых пена направляется на преграду и разрушается при столкновении с ней. Пузырьки пены разрушают также струей воздуха и акустически , и колебаниями. Выбор способа разрушения пены зависит от свойств пенообразующей среды и масштабов производства. [c.196]

    В работе [24] экспериментально показана возможность моделирования процесса трубной деэмульсации в лабораторной мешалке с цилиндрическим ротором. Однако проводить пересчет полученных результатов, приравнивая числа Рейнольдса для мешалки и трубопровода, нельзя. Хотя Не и характеризует уровень турбулентности, он может служить критерием подобия только для геометрически подобных потоков, поскольку несет в себе некоторый произвол в выборе отдельных параметров. В самом деле Re = wL/v, где I я и выбираются произвольно. Так, для трубопровода за L обычно принимают либо диаметр трубы, либо его радиус, за и— среднюю по сечению скорость, хотя можно было принять и максимальную в данном сечении скорость движения (осевую). По-раз-1 0му можно делать выбор характерных Ь н и для мешалки. От выбора этих параметров зависит значение числа Ке. [c.45]

    В последующих главах приведены методы расчет для выбора тех или иных мешалок и элементов обогре ва. При этих расчетах реакторы объемного типа с ме ханической мешалкой рассматриваются как объекты сосредоточенными параметрами, что и предопределяе выбор методов расчета и расчетные зависимости. [c.12]

    Лопастной вал рассчитывают на прочность по номинальной мощности электродвигателя привода с учетом его КПД. На лопастной вал действуют равномерно распределенная нагрузка от сопротивления перемешиваемой массы, равномерно распределенная нагрузка от собственной массы лопастного вала, крутящий момент Му, и осевые силы Q на лоиастях вала. Осевые силы на отдельных лопастях вала зетобразной мешалки противоположно направлены выбором углов подъема лопастей сумму сил Q делают равной нулю. Это позволяет исключить из расчетной схемы лопастных Е алов силы Q. [c.246]

    Выбор мешалки ни в коем случае не должен быть произвольным. Оптимальная форма и размеры лопа-> стей определяются необходимой интенсивностью перемешивания, подвижностью массы, размерами и формой сосуда, конкретными условиями проведени процесса и т. д. [c.73]

    Гомогенные реакторы. Консфуктивно гомогенные реакторы выполняются в виде аппаратов с мешалками или трубчатых (проточных) аппаратов. При известных кинетике и механизме реакций выбор типа реактора определяется условиями обеспечения равномерности распределения реагентов в объеме. Наличие фадиентов конценфации, температуры приводит к изменению физико-химических свойств реагентов (вязкости, плотности и т. д.) и, как следствие, к искажению профиля скоростей, неравномерному протеканию реакции по объему или сечению реактора. В случае изотермических реакций изменение характеристик реагентов в ходе протекания реакции может привести к неустойчивости системы в целом, т. е. к нарушению установившегося состояния по скоростям теплоподвода и теплоотвода. Характерными вопросами, решаемыми при проектировании этих реакторов, являются оценка гидродинамической сфуктуры потоков и обеспечение необходимого температурного режима реактора. [c.18]

    Пример 111-4. Эмульсионная полимеризация в кубовом реакторе непрерывного действия. Реагент А (М = 104 кг/кмоль) полимеризуется в дисперсной фазе в кубовом реакторе с мешалкой. Результаты экспериментов в реакторе перподпческого действия должны быть использованы для выбора условий проведения реакцпп. На основанпп этих предварительных исследований выведена эмпирическая формула скорости превращенпя [ср., например, уравненпе (1,20)]  [c.106]

    Используя вертикальный аппарат объемного типа с мешалкой в качестве реактора, надо учитывать как конструктивные и эксплуатационные характеристики аппарата могут наилучшим образом обеспечить режим синтеза данного полимера. Сложность выбора аппарата объемного типа для применения его в качестве реактора в химико-технологическом процессе состоит в том, что при синтезе и даже в процессе нагревания или охлаждения меняются физико-химические и теплофизические свойства реакционной массы, причем для выбора реактора важно знать изменение этих свойств не только для самого полимера, но и для реакционной смеси, находяшейся в аппарате в данный момент синтеза. [c.6]

    Исходя из кинетики протекающих реакций (33—3I и макрокинетических исследований, определяют требу мые гидродинамические и тепловые режимы синтезг а уже затем в соответствии с упомянутыми условиям выбирают тип стандартного аппарата и мешалш Ниже приведены методы расчета, которые позволяю осуществить выбор необходимого для данного процесс реактора объемного типа с мешалкой, исходя из вли5 ния перемешивания (33—36] при гомогенных и гетере генных химико-технологических процессах. Но прен де рассмотрим различные способы организации глдрс динамических процессов в реакторах объемного типа основные конструктивные характеристики аппарате мешалок, влияющие на гидродинамический режим реакторе. [c.14]

    При выборе между стандартной турбинной и пронеллерно й мешалками для получения более высокого напряжения сдвига следует отдать предпочтение пропеллеру. При одинаковых затратах мощности пропеллерные мешалки работают с более высокими скоростями и создают более высокое напряжение сдвига. На рис. 1-15 показана модифицированная турбинная мешалка, [c.27]

    Все приведенные выше зависимости для расчета мощности, затрачиваемой на перемешивание, и выбора числа оборотов мешалки относятся к перемешиванию ньютоновских жидкостей. Для неньютоновских жидкостей, отличаюш,ихся большим разнообразием свойств, получены лишь отдельные расчетные уравнения для определения мош,ности, потребляемой турбинными и якорными мешалками нри перемешивании псевдоила-стичных жидкостей .  [c.253]

    Мономер винклизобутилового эфира нужно промыть не менее пяти раз большими количествами дистиллированной воды, высуши гь, затем перегнать на ректификационной колонке. Чистый эфнр кипит при 80°. Полимеризация может проходить очень бурно, поэтому ее не,пьзя проводить в больших масштабах. Если имеется выбор, то лучше применить трехгорлую удлиненную колбу рис. 48), а ие круглодоиную, так как в этом случае охлаждение содержимого колбы происходит более эффективно. Реакционный сосуд снабжают мешалкой и охлаждают смесью ацетона н сухого льда. Сосуд заполняют азотом, не содержащим кислорода, конденсируют в него примерно 40 мл пропана и добавляют 10 мл впннлизобутилового эфира. Смесь перемешивают при —70° и добавляют три капли перегнанного эфирата фтористого бора. Полимеризация начинается в гетерогенной системе у поверхности нерастворимых капель катализатора. Примерно через 30 мин добавляют еше три капли катализатора и продолжают полимеризацию еще 90 мин. Дают возмож- [c.238]

    Растворитель для приготовления суспензии часто является определяющим фактором для качества упаковки. Так как суспензия должна сохранять стабильность, начиная от переноса ее в резервуар в течение всей упаковки, необходимо замедлить седиментацию или исключить ее. Для этого существует ряд способов. Один, называемый методом сбалансированной плотности и широко используемый, заключается в выборе растворителя с той же плотностью, что имеет силикагель. Этот растворитель состоит из смеси полигалогензамещенных углеводородов (обычно смесь тетрабромэтана и тетрахлорида углерода) так как плотность его равна плотности силикагеля, седиментации не происходит сколь угодно долго. Недостатком этого способа является высокая токсичность, дороговизна и трудность удаления из колонки полигало-генированных растворителей. Другой способ, называемый методом высокой вязкости , состоит в выборе растворителя с высокой вязкостью, в котором седиментация сорбента происходит достаточно долго. Обычно это растворители, содержащие глицерин, этиленгликоль или циклогексанол. Недостатком этого способа является длительность упаковки, доходящая до нескольких часов. Третий способ, называемый динамическим , состоит в использовании растворителей малой вязкости, упаковка при этом протекает быстро для улучшения стабильности и уменьшения седиментации иногда используют перемешивание суспензии магнитной мешалкой в процессе всей упаковки. [c.116]

    Перемешивание оказывает большое влияние на скорость реакции синтеза кислоты [8]. В изучении механического перемешивания повышение скорости вращеиия мешалки в 3 раза примерно во столько же раз увеличивает скорость реакции. Поэтому очень важным является выбор оптимальной насадки эвтоклава. [c.105]

    Схемы процесса. Пром. реализация Р., проводимого в аппаратах-растворителях, связана с определенной схемой взаимод. твердой и жидкой фаз замкнутый периодич. процесс (напр., в аппарате с мешалкой) прямоточное или противоточное Р., при к-ром фазы движутся соотв. в одном направлении либо в противоположных направлениях периодич. Р. в слое растворяющихся частиц (жидкость фильтруется через неподвижный стационарный слой). В крупно-тоннажных произ-вах наиб, распространены прямоточная и противоточная схемы. При прямотоке пов-сть Р. и движущая сила (Сд — с) одновременно уменьшаются, что приводит к замедлению процесса. При противотоке уменьшение пов-сти Р. сопровождается увеличением разности концентраций, а скорость Р. более постоянна. Выбор схемы Р. зависит также и от др. факторов, напр, от размера частиц растворяющегося в-ва. Так, при Р. полидисперсной смеси частиц в противоточном аппарате трудно избежать вьшоса за его пределы мелкой фракции вместе с жидкостью. [c.180]

    Ю.Выбор типа мешалки из 29 различных конструктивных вариантов при перемещивании произвольной жидкости в автоклаве диаметром О при числе оборотов мешалкиЛ об/мин [2, с.111-112, 531-532 ]. [c.158]

    Эффективность перемешивания определяется количеством энергии, затрачиваемой на неремешпванпе для достижения требуемого технологического эффекта. Таким образом, из двух аппаратов с мешалками более эффективно работает тот, в котором достигается определенный технологический эффект при более низкой затрате энергии. Эффективность перемешивания является также основой для оценки работы одного и того же аппарата (для выбора оптимального режима работы аппарата и оптимальных его размеров). Однако для того чтобы рассчитать эффективность перемешивания, необходимо знать уравнения, онределяюш,ие мош,ность, расходуемую на перемешивание, теплоотдачу, массоотдачу п т. д., не только для типовых систем, но и при переменных геометрических параметрах системы. Эта проблема в последние годы приобретает все большее значение. [c.14]


Смотреть страницы где упоминается термин Мешалка выбор: [c.102]    [c.229]    [c.286]    [c.83]    [c.246]    [c.427]    [c.345]   
Перемешивание и аппараты с мешалками (1975) -- [ c.48 ]

Перемешивание и аппараты с мешалками (1975) -- [ c.48 ]




ПОИСК







© 2025 chem21.info Реклама на сайте