Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбенты для молекулярной хроматографии и их модифицирование

    В монографии (1-е изд.— 1973 г.) рассматриваются адсорбционные и хроматографические методы исследования хи-мин поверхности н структуры твердых тел. Подробно описаны статические н газохроматографические способы получения изотерм адсорбции газов н паров, определения теплот адсорбции и теплоемкости адсорбционных систем, структурных характеристик твердых тел, спектроскопические методы исследования химической природы поверхности, методы изучения адсорбции из бинарных и многокомпонентных растворов и их применение в жидкостной молекулярной хроматографии. В приложении приведены способы получения адсорбентов и носителей и химического модифицирования их поверхности для использования в молекулярной хроматографии. [c.215]


    В практике молекулярной хроматографии наряду с га-зо-жидкостным все большее применение находит адсорбционный вариант. Это обусловлено созданием, разработкой и внедрением ряда высокоэффективных адсорбентов с достаточно однородными и разнообразными по химическому составу поверхностями, таких, как графитированные сажи, цеолиты, геометрически и химически модифицированные силикагели, пористые стекла и др., а также развитием раз- личных методов направленного синтеза адсорбентов с заданным комплексом свойств и разнообразных приемов Модифицирования поверхностей твердых адсорбентов. [c.3]

    Влияние химии поверхности адсорбента и ее модифицирования в жидкостно-адсорбционной хроматографии в общем сходно с таковым в газовой хроматографии, однако при этом надо учитывать конкурирующие взаимодействия с молекулами растворителя. Уменьшение специфичности адсорбента резко снижает величину гиббсовской адсорбции молекул группы В, например ароматических углеводородов, из растворов в к-алканах (молекулы группы А). В этих случаях величина гиббсовской адсорбции ароматического углеводорода может изменить знак — стать отрицательной (положительно начинает адсорбироваться элюент — к-алкап), так что изотерма проходит азеотропную точку [3, 64]. С этой возможностью надо обязательно считаться при разделении близких по свойствам компонентов и при регулировании молекулярного поля адсорбента и элюента, так как вблизи азеотропной точки разделение не произойдет. [c.56]

    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]


    Эти вопросы привлекают большое внимание практических работников. На международном симпозиуме по газовой хроматографии 1964 г. [1] треть программы была посвящена проблеме эксплуатации молекулярных взаимодействий , так как эти взаимодействия определяют удерживаемый объем. Здесь задача молекулярной теории — создание основ для правильной ориентировки в выборе адсорбентов для конкретных разделений. Создание максимальной однородности поверхности стало требованием практики, которому уже удовлетворяют направленные синтезы графитированных саж, аэросилогелей, ряда непористых солей, пористых кристаллов, пористых полимеров и адсорбентов с модифицированной поверхностью. Требование чистоты и однородности адсорбентов распространяется на препаративное и многотоннажное разделение. [c.104]

    В основе метода флюидной хроматографии лежит принцип смещения адсорбционного равновесия, которое определяется двумя факторами молекулярным взаимодействием в плотной газовой фазе и модифицированием поверхности адсорбента молекулами адсорбированного газа-носителя — флюида. Метод позволяет при температуре 200—250" разделять производные алкилбензолов с числом атомов углерода 36 (температура кипения выше 500°) за короткое время, одновременно улучшается симметрия пиков. В работе [160] приведены примеры разделения антиоксидантов, алкалоидов, хинонов и эпоксисмол (рис. 25, 26). [c.60]

    В ряде работ вычислена средняя потенциальная энергия адсорбции углеводородов на нитриде бора [33], на слое фталоцианина, нанесенного на графитированную термическую сажу [34], и на модифицированном органическими катионами глинистом минерале — гекторите [35]. Во всех случаях получено удовлетворительное согласие вычисленных величин средней потенциальной энергии адсорбции различных углеводородов с полученной из измерений теплоты адсорбции. Молекулярно-статистических расчетов удерживаемых объемов в этих случаях еще не было сделано. Для модифицированных слоями органических веществ адсорбентов такие расчеты можно будет сделать на основе атомных потенциальных функций межмолекулярного взаимодействия Фс - С) фн - с и фн-- н и потенциальных функций для гетероатомов в соответствующих валентных состояниях. Нахождение необходимого набора таких потенциальных функций требует проведения исследований адсорбции и газовой хроматографии на различных молекулярных кристаллах и на плотных монослоях углеводородов и других органических веществ, отложенных путем адсорбции из растворов или из газовой фазы непосредственно в колонне на поверхности таких адсорбентов — носителей, как, например, графитиро-ванные сажи и силохром (см. обзоры [3,36]). Накопление надежных данных в этой области и определение набора атом-атомных потенциальных функций межмолекулярного взаимодействия позволит рационально подойти к выбору оптимальных для газовой хроматографии структур активных углей, пористых полимеров и модифицирующих адсорбенты-носители пленок полимеров. [c.44]

    В заключение этого раздела настоящей работы следует отметить необходимость параллельного исследования как адсорбционных, так и ситовых эффектов в жидкостной хроматографии. С точки зрения молекулярных взаимодействий ситовой эффект необходимо сопровождается адсорбционным. Наряду с регулированием природы элюента, варьированием размеров и объема нор сита и сужением их распределения химическое модифицирование поверхности макропористых адсорбентов позволяет изменять адсорбционные и силовые эффекты в желаемом направлении. [c.62]

    Метод определения компонентного состава природного газа, описанный в работе [13], является дальнейшей разработкой метода определения основных компонентов с использованием трех насадочных колонок [7]. По сравнению с последним методом он предусматривает дополнительное использование колонки с молекулярными ситами для разделения N2, О2 и СН4, а также дополнительным использованием ПИД. Таким образом, для определения компонентного состава природного газа используются две колонки (1 и 2) с метилсиликоновой НФ на твердом носителе, колонка 3 с модифицированным полимерным адсорбентом и колонка 4 с молекулярными ситами. Ввод пробы в газовый хроматограф осуществляется с использованием 10-ходового крана-дозатора, нагреваемого до температуры 120 °С, а переключение колонок осуществляется двумя 6-ходовыми кранами (рис. 24). [c.39]

    Сущность и особенности физико-химических процессов распределений в газо-адсорбционной хроматографии. Непористые и пористые адсорбентьь применяемые в газовой хроматографии. Роль геометрической структуры адсорбента. Молекулярные сита. Неспецифические и специфические адсорбенты разных типов, роль химической природы поверхности адсорбента. Пористые полимеры. Вредное влияние неоднородности поверхности твердого тела и способы его ослабления. Способы улучщения разделения и достижения большей симметрии пика. Непористые адсорбенты. Пористые и макропористые адсорбенты, соотношение между удельной поверхностью и размерами пор. Химическое и адсорбционное модифицирование поверхности адсорбентов. Выбор оптимальной геометрической структуры и химии поверхности для разделения конкретных смесей. [c.297]


    В книге рассмотрена селективность газовой и жидкостной адсорбционной хроматографии на молекулярном уровне. Изложены новые молекулярно-статисти-ческие методы количественного расчета удерживаемых объемов и определения структурных параметров молекул на основе данных газоадсорбционной хроматографии. Рассмотрены адсорбенты для хроматографии и пути модифицирования их поверхности. Описано влияние на селективность строения молекул разделяемых веществ, поверхности адсорбентов, природы элюента. [c.280]

    Химическое модифицирование поверхности адсорбентов позволяет привить к ней различные функциональные группы и получить поэтому достаточно термостойкие адсорбенты, весьма разнообразные по химическому составу поверхности, а следовательно, и по селективности по отношению к молекулам различной электронной структуры. Однако при химическом модифицировании трудно получить достаточно плотный слой привитых групп из-за стерических препятствий, возникающих при протекании поверхностной реакции [69, 70, 132]. Кроме того, обычно химически модифицируются поверхности гидроокисей и окисей, которые, однако, геометрически неоднородны. Поэтому большой интерес для газо-адсорбционной хроматографии представляет другой способ модифицирования поверхности адсорбентов — их адсорбционное модифицирование нанесением плотных монослоев молекул или макромолекул, содержащих желательные для повышения селективности функциональные группы. Монослои, в отличие от толстых пленок жидкостей, применяелшх обычно в газо-жидкостной хроматографии, находятся в молекулярном поле адсорбента, поэтому их летучесть оказывается резко сниженной по сравнению с летучестью объемной жидкости. Благодаря этому адсорбированные монослои при более высоких температурах колонки гораздо менее летучи, чем соответствующие жидкости. [c.56]

    Разделение на специфических адсорбентах. Влияние химии поверхности адсорбента и ее модифицирования на жидкостно-адсорб-нионную хроматографию компонентов из более слабо адсорбирующегося растворителя в общем сходно с таковым в газо-адсорбционной хроматографии. Однако в случае жидкостной хроматографии надо учитывать молекулярные взаимодействия с молекулами растворителя в соответствии с закономерностями адсорбции из растворов. Поэтому в жидкостно-адсорбционной хроматографии целесообразнее говорить о селективности хроматографической системы в целом адсорбент — растворенные вещества — растворитель. В качестве адсорбентов в жидкостно-адсорбционной хроматографии в основном использовались различные препараты окиси алюминия (активная,нейтральная и кислая окись алюминия) [46] и силикагели как в обычном виде,т.е. [c.215]

    Десять лет тому назад адсорбционную молекулярную хроматографию применяли в основном для разделения газов. В настоящее время диапазон разделяемых методом адсорбционной и ситовой хроматографии веществ значительно расширился. Он охватывает самые разнообразные вещества — от изотопов и изомеров водорода до синтетических полимеров, белков и вирусов. Этому способствовали главным образом следующие усовершенствования 1) регулирование однородности и специфичности молекулярного поля адсорбентов путем направленного синтеза адсорбентов и модифицирования их поверхности 2) расширение диапазона температур работы газо-хроматографических колонн до 500° С 3) применение сильно адсорбирующихся газов-носителей при высоких давлениях, сблизившее газовую хроматографию с жидкостной 4) развитие жидкостной молекулярной хроматографии на адсорбентах с регулируемым химическим составом поверхности и регулируемой пористостью, в частности, на поверхностно-пористых адсорбентах 5) создание набора молекулярных и макромолекулярных сит, в особенности, ненабухающих 6) разработка чувствительных методов детектирования в жидкостной хроматографии. [c.5]

    Варфоломеев Д.Ф..Бахтизина Р.3..Соколова В.И.Применвние неорганических модифицированных адсорбентов для разделения концентратов нефтяных кислот и оснований.-Тезисы докладов Ш Всес. симпозиума по молекулярной жидкой хроматографии.-Рига, Изд. [c.136]

    В курсе приведены многочисленные примеры практического применения главным образом газовой и молекулярной жидкостной хроматографии на адсорбци-онно или химически модифицированных адсорбентах для анализа углеводородов, их производных и гетероциклических соединений. Особое внимание уделено анализу вредных примесей, разделению углеводов, стероидов, гликозидов, азолов, азинов, а также таких важных галогенпроизводных, как фреоны и пестициды. Адсорбция микотоксинов, представляющих собой одну из серьезнейших пищевых и кормовых проблем, рассматривается как в аспекте хроматографического их анализа, так и в аспекте хроматоскопического исслв1Дования структуры их молекул. В конце курса приведены примеры адсорбции и хроматографии синтетических и природных макромолекул. Здесь рассматривается иммобилизация некоторых ферментов и клеток (например, для осахарнвания крахмала, изомеризации глюкозы, для решения проблем искусственной почки), а также вопросы хроматографической очистки вирусов, в частности, вирусов гриппа и ящура. [c.4]

    В первой части этого курса были рассмотрены различные по химической природе и геометрической структуре адсорбенты, применяемые в молекулярной газовой и жидкостной хроматографии от одноатомного адсорбента с однородной плоской поверхностью графитированная термическая сажа) до непористых и микропористых солей, кристаллических микропористых и аморфных оксидов (на примере кремнезема) и органических пористых полимеров, а также способы адсорбционного и химического модифицирования адсорбентов. При этом были рассмотрены химия поверхности и адсорбционные свойства этих адсорбентов — поверхностные химические реакции, газовая хроматография, изотермы и теплоты адсорбции и происходящие при модифицировании поверхности и адсорбции изменения в ИК спектрах. Уже из этой описательной части курса видно, что свойства системы газ — адсорбент в сильной степени зависят как от химии поверхности и структуры адсорбента, так и от природы и строения адсорбируемых молекул, а также от их концентрации и температуры системы. Приведенные экспериментальные данные позволили рассмотреть и классифицировать проявле- [c.126]

    Известны два гшда хроматографии газо-адсорбционная и газо-жидкостная. В [И рвом случае в качестве адсорбента применяют гели, активные у ли, молекулярные сита, пористые стекла, модифицированные сорбенты. Во втором — в качестве сорбента служит тонкая пленка растворителя, слой так назы-паемой неподвижной фазы, нанесенной на инертный твердый носитель. [c.171]

    В этом направлении большой интерес представляют работы Зи, Блемера, Рийндерса, Ван Кревелена [273, 274], использовавших в качестве флюидов пентап, диэтиловый эфир, изопропанол при давлении 30—50 атм и температуре 250° С вместо газа-носителя низкого давления. В основе метода флюидной хроматографии лежит принцип смещения адсорбционного равновесия, которое определяется двумя факторами молекулярным взаимодействием в плотной газовой фазе и модифицированием поверхности адсорбента молекулами адсорбированного газа-носителя — флюида. Метод позволяет при температуре 200—250° С разделять производные алкилбензолов с числом атомов углерода 36 (температура кипения выше 500° С) за короткое время одновременно улучшается симметрия пиков. В работе [273] приведены примеры разделения антиоксидантов, алкалоидов, хинонов и эпоксисмол (рис, 52, 53). [c.155]

    Книга состоит из краткого введения и двух частей, посвященных газовой и жидкостной адсорбционной хроматографии. Во введении рассматриваются особенности адсорбционной хроматографии и связь селективности с межмолекулярными взаимодействиями при адсорбции. В первой части книги рассмотрена ГАХ. Здесь приводятся краткие сведения о наиболее однородных адсорбентах для ГХ и их модифицировании, а также хроматограммы, качественно иллюстрирующие молекулярные основы разделения. Рассматриваются погрешности определения удерживаемого объема по газохроматографическим измерениям, методы нахождения из удерживаемого объема константы Генри, а также термодинамические уравнения, связывающие эту константу с теплотой адсорбции и теплоемкостью адсорбированного вещества, которые могут быть определены независимо. Изложены основы молекулярно-статистической теории адсорбции, даются выражения, связывающие константу Генри с иотенци- [c.8]

    За десять лет, прошедшие со времени выхода в свет первой книги (1967 г.), достигнуты значительные успехи в теории и практике газоадсорбционной хроматографии. Область ее применения значительно расширилась и охватывает теперь практически все вешества, способные переходить в газовую фазу без разложения. Кроме того, адсорбционные эффекты стали широко использоваться и в газо-жидкостной хроматографии для повышения селективности разделения и стабильности колонн. Развитие методов модифицирования поверхности адсорбентов привело к широкому применению метода адсорбционноабсорбционной хроматографии, основанного на совместном использовании адсорбции и растворения или близких к растворению процессов. Новые возможности открылись в адсорбционной хроматографии благодаря применению повышенных давлений и сильно адсорбирующихся газов-носителей и в адсорбционной капиллярной хроматографии. Адсорбционные колонны широко используют для концентрирования примесей, в частности вредных летучих примесей из воздушных и водных сред. Успешно разрабатывается молекулярная теория селективности газо-адсорбционной хроматографии, в частности методы количественных молекулярно-статистических расчетов термодинамических характеристик удерживания. Все эти вопросы нашли отражение в первой части книги (главы 1—9). Вопросы же физико-химического применения [за исключением измерения и [c.5]

    Получены в удобном для хроматографического применения виде макропористые кремнеземы и окись алюминия различные непорнстые и нанесенные на носитель соли цеолиты непорнстые, макропористые и микропористые углеродные адсорбенты макропористые органические полимерные материалы с различными функциональными группами. Адсорбционное и химическое модифицирование поверхности расширяет круг адсорбентов для молекулярной газовой и жидкостной хроматографии практически безгранично. [c.7]

    Большое значение имеет изменение в нужном направлении меж-молекулярных взаимодействий компонентов разделяемой смеси и газа-носителя или растворителя (элюента) с адсорбентом. Это достигается соответствующим изменением химической природы поверхности адсорбентов путем ее химического и адсорбционного модифицирования. Химическое модифицирование особенно важно в жидкостноадсорбционной хроматографии. [c.8]


Смотреть страницы где упоминается термин Адсорбенты для молекулярной хроматографии и их модифицирование: [c.306]    [c.56]    [c.52]    [c.2]    [c.454]    [c.44]    [c.75]    [c.95]    [c.224]    [c.75]   
Смотреть главы в:

Межмолекулярные взаимодействия в адсорбции и хроматографии -> Адсорбенты для молекулярной хроматографии и их модифицирование




ПОИСК





Смотрите так же термины и статьи:

Хроматография молекулярная



© 2025 chem21.info Реклама на сайте