Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптическая активность и хиральность

    Если оптическая активность хирального соединения измеряется и записывается как функция длины волны, то в итоге получается кривая дисперсии оптического вращения (ДОВ). Если в структуре соединения отсутствуют хромофорные группы, оптическое вращение непрерывно уменьшается с увеличением длины волны, и получается так называемая плавная кривая ДОВ. Однако если в исследуемой области спектра у соединения окажутся полосы поглощения, то они вызовут появление эффекта Коттона [21], т. е. на кривой будет наблюдаться один или больше пиков и впадин (экстремумов). Знак и величина эффекта Коттона, молекулярная амплитуда а, определяются согласно уравнению (3.9), в котором [Ф], и [Ф]з — молекулярное вращение в более длинноволновой (индекс 1) и в более коротковолновой (индекс 2) областях спектра соответственно. Молекулярное вращение в свою очередь определяется уравнением (3.10), где М — молекулярная масса соединения. [c.42]


    Спектры дисперсии оптического вращения и спектры кругового дихроизма, которые в значительной степени заменили первые в качестве главного хироптического метода исследования, применяются к оптически активным (хиральным) кетонам. Такие спектральные исследования особенно важны для определения относительных и абсолютных конфигураций и в конформационном анализе. Способные к поляризации -заместители, такие как галогены, гидрокси- или ацетоксигруппы, а,р- и р, у-ненасыщенные группировки, приводят к сильным эффектам Коттона в ультрафиолетовой области спектра к таким же эффектам могут приводить подходящим образом расположенные удаленные заместители. Этот предмет подробно изложен в монографии [484]. Ссылки на более поздние работы и важный вклад в эмпирическую теорию метода см. в работе [485].  [c.679]

    Важно также определить оптическую чистоту хирального катализатора путем измерения оптической активности хирального лиганда или в отдельных случаях самого хирального комплекса. Некоторые органические соединения (например, хиральные алканы) имеют очень малые величины оптического вращения даже при высокой оптической чистоте, что иногда очень затрудняет измерение оптической чистоты с достаточной точностью. [c.42]

    В присутствии специальных катализаторов, содержащих фосфониевые соли 1519], несколько гидроксильных групп [905, 1519], две аммонийных группы [905], частично защищенные моносахариды [1201] и хиральные краун-зфиры (максимальный оптический выход 8%) [1344] также могут образовывать оптически активные продукты. [c.107]

    При использовании хиральных катализаторов для получения сульфидов с помощью алкилирования [1469] и присоединения к активированной двойной связи в некоторых случаях наблюдался высокий выход оптически активных продуктов (разд. 3,1.5). Высушенный с помощью вымораживания фторид калия является очень активным основанием, которое позволяет проводить алкилирование тиолов даже в отсутствие МФ-катализаторов [1605]. [c.147]

    Оптическая изомерия, поляризация света, оптическая активность, энантиомеры, хиральность. Классификация изомеров [c.187]

    Всегда ли вещество, содержащее два асимметрических атома углерода (хиральных центра), будет оптически активно  [c.83]

    Проблема биосинтеза непосредственно связана с оптической активностью соединений, обусловленной хиральностью соединений. Поэтому определение абсолютной конфигурации представляет очень важную задачу. Для решения такой задачи неоценимую роль играет правило октантов, которое позволяет обойтись без экспериментального изучения родственных соединений (сравнительный метод). [c.206]


    Метод изображения объемных структур (молекул) на плоскости чертежа, согласно которому хиральный (оптически активный) атом углерода лежит в плоскости чертежа и изображается пересечением горизонтальных и [c.247]

    Хиральные растворители. Оптически активные растворители, молекулы которых содержат асимметрический атом углерода, называют еще хиральными, например  [c.74]

    ОПТИЧЕСКАЯ АКТИВНОСТЬ И ХИРАЛЬНОСТЬ [c.129]

    Стераны и гопаны являются основными источниками оптической активности нефтей. На рис. 56 показано изменение оптической активности нефтяных фракций с увеличением температуры кипения [68]. Хорошо видно, что наибояьшаяГбптическая активность наблюдается для фракции 420—550° С, содержащей углеводороды, имеющие молекулярный вес в диапазоне 350—450 мае. чисел, т. е. углеводороды состава —С35 — стераны и тритерпаны. В этом нет ничего необычного, так как число хиральных центров в этих углеводородах достаточно велико (8—9 в стеранах и 9—10 в гопанах.) К тому же абсолютные величины оптической активности хиральных центров, находящихся в циклической части молекул, обычно весьма велики. Удивление здесь вызывает другое. Каким образом, в условиях катагенеза и вероятного воздействия кислотных катализаторов могла сохраниться оптическая активность Тем более, что ранее была показана большая роль реакций эпимеризации при образовании неф- [c.142]

    Особое место среди ЛСР занимают оптически активные (хиральные) реагенты, например, с лигандом ТФК- Они открыли новые возможности для исследования методом ЯМР оптически активных соединений. Известно, что спектры ЯМР оптических антиподов (О) и (Ь) неразличимы. При введении хирального ЛСР (/ ), способного образовывать аддукт с оптически активным субстратом, образуются два диастерео-мерных аддукта О — и Ь — / . Они неодинаковы как в химическом отношении, так и по спектрам ЯМР. Поэтому, если был взят рацемат, наблюдается расщепление спектральных линий на равноинтенсивные компоненты, а если был взят один из антиподов, то такое расщепление произойти не должно. Например, при исследовании соединения [c.111]

    Можно изучать стереохимические закономерности реакций нуклеофильного замещения с помощью оптически активных алкилгалогенидов, содержащих атом галогена, связанный с хираль-пым центром, например С2Н5СНС1СН3. Полученные при этом данные полностью согласуются с механизмами реакций, предложенными выше на основании кинетических исследований. Если оптически активный хиральный галогенид подвергается 8м1-ре-акции, то получается рацемический продукт. Если нуклеофильное замещение является 5н2-реакцией (что установлено кинетическими исследованиями), то образуются оптически активные продукты, причем при использовании оптически чистого исходного галогенида получаются оптически чистые продукты реакции (т. е. не наблюдается рацемизация). [c.225]

    В. В. Марковников и А. М. Зайцев сформулировали ряд правил, впервые связавших направление хим. р-ции с хим. строением вступающего в р-цию в-ва. Эксперим. данные Й. Вислиценуса (1873) об идентичности структурных ф-л (-(-)-молочной к-ты (из кислого молока) и ( )-молочной к-ты послужили толчком для создания стереохим. теории (Я. Вант-Гофф и Ж. Ле Бель, 1874), в к-рой постулировалось тетраэдрич. строение фрагмента с четырехвалентным атомом углерода, что в случае четырех разл. заместителей предсказывало существование пространственно-зеркальных изомеров для соед. с двойной связью (тетраэдры соединяются по ребру)-наличие геом. изомерии. На этой основе возникла стереохимия-тука, о трехмерной ориентации атомов в молекулах и вытекающих отсюда следствиях, касающихся св-в соед. (см. также Конфигурация стереохимическая, Конформационный анализ. Молекулярная механика. Оптическая активность, Хиральность). [c.397]

    ХИГОПТЙЧЕСКИЁ МЁТОДЫ, объединяют родственные оптич. методы исследования оптически активных (хиральных) соед. поляриметрию (ПМ), дисперсию оптич. вращения (ДОВ) и круговой дихроизм (КД). X. м. основаны на взаимод. поляризованного света с хиральными сфуктурами, к-рые об- [c.273]

    Круговой дихроизм, однако, используют не только при определении оптической активности хиральных молекул. Его ус-пещно применяют при выявлении асимметрии, индуцируемой в-результате включения обычно симметричной или нехиральной молекулы в организованную структуру, например при асимметричном связывании с белком. Индуцированная асимметрия может приводить к различному поглощению право- и левовращающего поляризованного света, т. е. в результате КД можно наблюдать в области главных полос поглощения хромофора. Ilpii этом удается выявлять различные формы пигмента in situ и получать сведения об искажениях конформации молекулы хромофора, вызванных связыванием с другими молекулами ил[1 обусловленных структурной организацией. [c.29]

    Оптическая активность. Хиральные соединения проявляют оптическую активность при пропускании через них плоскополяризованного света. После прохождения через поляризатор обычный свет (рис. 3.12, а) становится плоскополяри-зованным, т. е. вектор электрического поля колеблется только в одной плоскости, перпендикулярной направлению распространения луча (рис. 3.12,6). Эта плоскость называется плоскостью поляризации света. [c.70]


    Возникновение оптической активности у хирального соединения объясняется тем, что скорость распространения левого и правого циркулярно поляризованных компонентов плоскополяризованного света в оптически активной (хиральной) среде различна. При прохождении плоскополяризованного света через оптически активное вещество у составляющих его лучей возникает разность фаз. В результате на выходе из оптически активной среды плоскость поляризации света будет отклонена от своего первоначального положения на некоторый угол а. [c.70]

    В случае диметилциклогексанов различие в устойчивости цис-и транс-изомеров оценивается приблизительно в 8 кДж/моль Монозамещенные циклогексаны имеют плоскость симметрии и не могут существовать в виде оптических антиподов и, следовательно, обладать оптической активностью (хиральностью) [c.39]

    Согласно правилам ЮПАК по стереохимии органических соединений, неидентичность предмета и его зеркального изображения называется хиральностью. Объект, например молекула в данной конфигурации или конформации, называется хиральным, если он не совмещается со своим зеркальным изображением. Термин хиральность равнозначен право- или левосторонно-сти и происходит от греческого слова хейр (хеср) — рука. Все хиральные молекулы являются молекулами оптически активных соединений, и, следовательно, молекулы всех оптически активных соединений — хиральны. Оптические методы, основанные на оптической активности хиральных молекул, можно назвать хироптическими методами . [c.5]

    В среде оптически активных простых эфиров ахиральный (диссим-метричный) гриньяров реактив присоединяется к ахиральным оксосоединениям с образованием оптически активных хиральных спиртов с оптическим выходом до 70%. [c.369]

    Для энантиоселективного синтеза сложных эфиров использовали оптически активные полиамины (полученные из производных аминокислот). Продукты имели очень низкую оптическую чистоту [1722]. Еще в одной группе опытов была поставлена цель получить сложные эфиры DL-2-фенилмасляной и DL-миндальной кислот при использовании серии хиральных катализаторов с асимметрическим углеродным скелетом с гидроксильными группами и без них. Только в присутствии бромида (li ) - (4 -изопропил)-(1г-метил)-(Зс-триэтиламмоний)циклогек-еа а был достигнут небольшой оптический выход [843, 949]. Оксим сополимера 4-винилпиридина и (5)-5-метилгептен-1-она-3 показал очень умеренное хиральное различие при гидролизе эфира (ОЕ)-/г-нитрофенил-3-метилпентановой кислоты [1723]. [c.107]

    При 100°С бензилхлоридом (20 мин), циклогексил- или неопен-тилбромидом (40 ч) выходы 85—100% Оптически чистый ал килметансульфонат дает продукты с инверсией около 90%. Для-некоторых вторичных субстратов и неопентилбромида в качестве побочной реакции наблюдается элиминирование. Скорость-реакций намного ниже при использовании в качестве растворителя амилового спирта. Это наблюдение согласуется с предположением о том, что для протекания быстрой МФК-реакции необходимо, чтобы ионные пары были несольватированы [258,. 1524]. (О реакциях, идущих в присутствии краун-эфиров см. [1108, 1379, 1534].) При алкилировании 2-бромалканоатами в-системе твердая фаза/жидкая фаза с хиральным катализатором были получены оптически активные 2-фталимидные эфиры с низкими или умеренными оптическими выходами [940, 1469] см. разд. 3.1.5. [c.164]

    Холестерические. Эти структуры аналогичны нематическим, но образованы оптически активными жесткоцепными полимерами и обладают вследствие этого способностью к интенсивному оптическому вращению (хиральны) [рис. 3.13]. Холестерические, так же как и нематические, структуры характеризуются высокой степенью дальнего ориентационного порядка. Такие структуры имеют ось симметрии, расположенную нор- [c.149]

    Это хиральный акцептор с осью симметрии С2, в котором двугранный угол между плоскостями соединенных друг с другом нафталиновых колец может варьировать от 60 до 120°. Введение бинафтильной системы в краун-эфир приводит к нарушению планарности макроциклического кольца и скручиванию его подобно спирали. Известны как (5,5)-, так и (/ , )-конфигурации. Будучи оптически активными, они могут использоваться для разделения рацемических солей первичных аминов и амнно-эфиров. [c.268]

    Что можно сказать о стереохимическом узнавании До сих пор мицеллы лишь нескольких оптически активных ПАВ были использованы в качестве катализаторов в некоторых реакциях с хйраль-ными субстратами, но в общем эффекты оказывались небольшими. Приведем здесь два примера, когда хиральные мицеллы могут стереоселективно катализировать гидролиз хиральных эфиров. [c.290]

    За последние годы при изучении стереохимии оптически активных веществ получили развитие различные спектрофотометрические методы исследования, основанные на явлениях, связанных с поляризацией света. Оптическая активность комплексных соединений проявляется в том случае, когда расположение лигандов в координационной системе хирально , т. е. в ней отсутствует зеркально-поворотная ось, вращение вокруг которой переводит молекулу в соответствующий стереоизомер. Линейно-поляризованный свет можно представить себе как совокупность двух циркулярно-поляризованных волн с одинаковыми частотами и амплитудами. Тогда оптическая активность обусловлена тем, что право- и левополяризованный свет распространяется, в веществе с разной скоростью. Угол поворота плоскости поляризации а пропорционален разности коэффициентов преломления право- и левополяризованного света  [c.129]

    Отметим, что из шести атомов углерода молекулы глюкозы четыре атома, с номерами 2, 3, 4 и 5, хиральны, поэтому глюкоза имеет много конфигурационных изомеров. Несколько природных сахаров отличаются от глюкозы только конфигурацией у одного из четырех хиральных атомов углерода. Эти сахара имеют различные биологические свойства, что еще раз свидетельствует о чрезвычайной специфичности биологических систем. Многие сахара - оптически активные вещества, так как их растворы вызывают вращение плоскости поляризации линейнополяри-зованного света, как это показано на рис. 23.14. [c.455]

    Одним из важнейших свойств молекул, особенно природных соединении, является свойство хиральности, или оптической активности. Оно обусловлено существованием зеркальноподобных изомеров — энантиомеров. [c.168]

    Рассматривая более широко исследования оптически активных веществ, следует указать на хроматографический метод и метод ЯМР, которые здесь не излагаются. В первом методе используют хиральные неподвижные фазы в качестве адсорбента. Во втором методе создают условия для различий в химических сдвигах и интенсивностях отдельных сигналов энантиотропных групп за счет их взаимодействий с хиралЬным растворителем или хиральным сдвигающим реагентом (см. глЛ1). [c.168]

    Для разделения энантиомеров (оптических изомеров) применяют лигандообменную хроматографию. Так, рацемические а-амино-кислоты были успешно разделены на оптически активные антиподы хроматографией на хиральном адсорбенте с химически привитыми группировками -пролина в присутствии ионов меди. Структура комплекса, образуемого иммобилизованным лигандом ( -проли-ном), комплексообразующим ионом металла и подвижным лигандом L- и О-аминокислоты с различными Р) в данной системе может быть представлена следующим образом  [c.107]

    Хиральные растворители используются в ЯМР-спектроскопии для определения абсолютной конфигурации оптически активных соединений. С этой целью рацемат растворяют в хи-ральном растворителе. При этом отдельные энантиомеры (5) и (R) взаимодействуют с хиральным растворителем по-разному и потому дают неодинаковые спектры ЯМР. Так, если в качестве хирального растворителя использовать (5)(+)-2,2,2-три-фтор-1-фенилэтанол, а в качестве субстрата взять рацемический а-арилэтиламин, то в его спектре ПМР сигнал метинового протона 5-энантиомера попадает в более слабое поле, чем сигнал соответствующего протона Л -энантиомера. [c.74]


Смотреть страницы где упоминается термин Оптическая активность и хиральность: [c.637]    [c.21]    [c.258]    [c.188]    [c.190]    [c.105]    [c.44]    [c.143]    [c.218]    [c.384]    [c.400]    [c.184]    [c.184]    [c.258]   
Смотреть главы в:

Органическая химия. Т.1 -> Оптическая активность и хиральность




ПОИСК





Смотрите так же термины и статьи:

Оптическая активность

Хиральность

активное оптически активное



© 2025 chem21.info Реклама на сайте