Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлов комплексы хиральные

    КОМПЛЕКСЫ МЕТАЛЛОВ (ОБМЕН ХИРАЛЬНЫХ ЛИГАНДОВ) [c.141]

    Ниже описаны типичные примеры разделения энантиомерных комплексов металлов на хиральных сорбентах (целлюлоза, крахмал и т. д.). [c.338]

    Разделение энантиомерных комплексов металлов на хиральных сорбентах можно рассматривать как метод менее растворимых диастереомеров . По-видимому, между адсорбционной способностью отдельных энантиомеров (диастереомеров) и их конфигурацией имеется определенная связь. Например, энантиомеры (диастереомеры) с меньшей адсорбционной способностью будут иметь сходную конфигурацию. Однако это должно быть справедливо только для сорбентов или комплексов с одинаковыми адсорбционными характеристиками. Следует также учитывать зависимость порядка элюирования изомеров от типа элюента [108] и сорбента [105], а также от конфигурации лиганда [117]. [c.340]


    Очень важной частью характеристики молекулы является ее абсолютная конфигурация. То же справедливо и для хиральных растворителей. Для установления абсолютной конфигурации растворителя можно использовать явление кругового дихроизма, индуцированного в УФ-спек-трах комплексов металлов, сольватированных хиральным растворителем [61] этот метод привлекателен тем, что соответствующие эксперименты легко выполнимы. [c.105]

    В тетраэдрических и октаэдрических комплексах центром хиральности может быть прежде всего сам атом металла. В этих случаях амплитуды эффекта Коттона в области й— -переходов металла особенно велики, поскольку металл одновременно является и хромофором, и центром хиральности. Величина эффекта Коттона в конечном итоге зависит от природы лигандов, создающих хиральное окружение, а знак непосредственно связан с конфигурацией вокруг центрального атома. Создаваемую таким путем оптическую активность называют конфигурационной. [c.675]

    Значительно более универсален метод ЯМР, базирующийся на использовании лантаноидных сдвигающих реагентов он сочетает высокое разрешение, обусловленное псевдоконтактным сдвигом сигналов в слабое поле [9], с их расщеплением вследствие энантиоселективного взаимодействия с хиральным лантаноидным комплексом [10]. Принцип этого метода отражен на рис. 3.3. Обычно 3-дикетоны (в форме енолов) образуют прочные комплексы с ионами металлов ряда лантаноидов, например с Еи + или Рг +. Эти парамагнитные комплексы могут объединяться или каким-то образом взаимодействовать с соединениями, имеющими электронодонорные группы, такими как амины, аминокислоты, спирты, кетоны и эфиры, вызывая значительный сдвиг сигналов в слабое поле для ядер, не слишком удаленных от центров взаимодействия. И поскольку хиральные 3-дикетоны вполне доступны, то доступны и хиральные сдвигающие реагенты. На рис.3.3 показан в качестве примера ком- [c.34]

    Рнс. 5.2. Принципиальная схема хирального лигандного обмена, используемого для хроматографического разделения оптических изомеров при взаимодействии хирального селектора (слева) и соответствующих энантиомеров (справа) происходит обратимое образование диастереомерных комплексов металлов. [c.75]

    НЫЙ хиральный лиганд, образующий координационные соединения с ионами переходных металлов. В процессе пропускания соответствующей рацемической смеси через колонку происходит образование смешанно-лигандных сорбционных комплексов по обменному или вытеснительному механизму. Такой лигандообменный процесс схематически представлен на рис. 5.2. [c.76]


    ФАЗЫ НА ОСНОВЕ ХИРАЛЬНЫХ КОМПЛЕКСОВ МЕТАЛЛОВ [c.94]

    Хиральный комплекс 0-дикетон — металл правовращающая группа представляет собой асимметрический циклический или бициклический элемент. [c.96]

    Чтобы понять это обращение порядка выхода энантиомеров, рассмотрим различные возможности стабилизации сорбционного комплекса (т. е. комплекса, образованного хиральным лигандом, ионом металла и разделяемыми энантиомерами в неподвижной фазе) за счет координации молекул растворителя или других лигандов в его аксиальных положениях. Считается, например, что координация молекул воды в аксиальном положении стабилизирует комплекс. Следовательно, стабильность комплекса в очень большой [c.143]

    Каталитическое разложение диазосоединений проходит через карбеноиды [см., например, схему (42)], что обнаруживается по различному составу продуктов, получаемых из карбеноидов меди и свободных карбенов. Следует отметить, что карбены также дают продукт внедрения по связи С—Н. Катализаторами служат медь и ее соли, разнообразные галогениды металлов и другие кислоты Льюиса, а также тетрафенилэтан. Включение катализатора в переходное состояние циклопропанирования подтверждено асимметрической индукцией, наблюдавшейся при использовании в качестве катализаторов хиральных медных комплексов [54]. [c.591]

    Выбор хиральных лигандов, способных контролировать хиральность я-комплексов, образующихся между субстратом и данным металлом, и вследствие этого вести, например, асимметрическое гидрирование, осуществляется пока чисто эмпирическим путем,, хотя в этой области наблюдается быстрый прогресс. Очевидно, что данная концепция может быть распространена и на многие другие-классы металлорганических реакций, включая важные процессы образования углерод-углеродных связей. Залогом успехов в этой [c.325]

    Гидрофильное внутреннее пространство в структуре хозяина а означает, что полость содержит гетероатомы подобные кислороду, у которых неподеленная пара электронов способна к образованию связи с такими акцепторами электронов, как катионы металлов или органические катионы. Гидрофобная внешняя поверхность придает комплексам хозяин—гость растворимость в органических средах, т. е. то свойство, которое используется в так называемом межфазном катализе (см. разд. 7.2.1). Один из типов таких соединений- хозяев обнаружен среди природных макропикличе-ских полиэфиров, которые, как известно, способны связывать катионы щелочных металлов. Синтетические хиральные аналоги таких соединений, хиральные краун-эфиры, действительно проявляют заметную энантиоселективность по отношению к органическим аммониевым ионам. В этом случае ион аммония удерживается в полости вследствие образования водородных связей с эфирными кислородными атомами. Таким образом, в этом случае структурные и стерические требования гостя являются достаточно высокими. [c.78]

    Гомогенное карбеноидное циклопропанирование олефинов, катализируемое комплексами металлов, также включает участие металлкарбеновых комплексов На это указывают следующие данные а) при использовании в качестве катализаторов различных оптически активных соединений переходных Металлов образование хиральных циклопро-пановых производных протекает с высокой степенью энантиоселективности б) производные циклопропана получены стехиометрической реакцией металлкарбеновых комплексов с некоторыми олефинами  [c.181]

    Эти пионерские работы показали, что с помощью соответствующей модификации лиганда можно добиться очень высокой селективности катализатора по отношению к данному конкретному продукту. В настоящее время активно исследуются методы получения оптически чистых хиральных фосфинов, поскольку последние по своей важности занимают особое место среди многих других лигандов [ 13]. Все же следует иметь в виду, что наибольшей селективностью, по-видимому, должны обладать комплексы, в которых центр хиральности расположен не на лиганде, а на самом атоме металла. Подобной хиральностью обладают, например, тетраэдрические комплексы с четырьмя различными монодентатными лигандами. Однако нет никакой уверенности в том, что в ходе каталитического цикла такой центр Не будет подвергаться сильному возмущению, сопровождаемому рацемизацией или диспропорционированием. Поэтому большие надежды возлагаются на комплексы с центром хиральности у того из атомов лиганда, который непосредственно связан с атомом металла. В некоторых случаях такой подход дает удачные результаты, И все же при использовании монодентатных хиральных фосфинов не всегда достигается высокая селективность катализатора, что связано с возможностью диссоциации фосфина и свободным его вращением вокруг связи металл - лиганд. В этом отношении намного перспективнее хиральные хелатирующие лиганды. Уже имеется целый ряд примеров применения хиральных дифосфиновых хе-латантов для проведения реакций с высокой энантиоселективностью. [c.212]

    Разделению энантиомеров аминокислот методом колоночной хроматографии посвящен обзор Ауберта 141]. Автор отмечает, что в аналитических целях более всего удобны методики, ос нованные на добавлении асимметрического реагента в подвижную фазу. Лефебру и др. [127] удалось полностью разделить аминокислоты, используя пористые гели на основе акриламида с привитыми остатками Ь-а-аминокислот, образующими комплексы с ионами металлов. Авторы [127] рассмотрели влияние структуры геля, кинетики жидкостного обмена, а также природы ионов металла и хирального привитого компонента на хроматографические характеристики энантиомеров аминокислот. [c.59]


    Второй тип стереоизомерии называется оптической изомерией. Оптические изомеры представляют собой несовместимые зеркальные изображения один другого. Они так же похожи друг на друга, как левая и правая рука человека. Если вы посмотрите в зеркало на свою левую руку, как показано па рис. 23.12, то увидите, что ее отражение идентично вашей правой руке. Вместе с тем две руки человека нельзя совместить одну с другой (т.е. наложить одна на другую до полного совпадения). Хорошим примером комплекса, обнаруживаюшего такой тип изомерии, служит ион Со(еп)з . На рис. 23.13 показаны два оптических изомера Со(еп)з , которые соотносятся друг с другом как предмет и его зеркальное отражение. Как известно, никакими поворотами нельзя добиться совмещения правой руки с левой, точно так же пи один из оптических изомеров нельзя повернуть так, чтобы он оказался идентичен другому, В этом совсем несложно убедиться, если изготовить трехмерные модели изомеров, показанные на рис. 23.13. Те молекулы или ионы, оптические изомеры которых представляют собой зеркальное отражение друг друга, называют хиральными. К числу хиральных молекул относятся ферменты, выполняющие роль катализаторов в организме. Как указывалось в разд. 23.2, многие ферменты содержат комплексные ионы металлов. [c.382]

    Для разделения энантиомеров (оптических изомеров) применяют лигандообменную хроматографию. Так, рацемические а-амино-кислоты были успешно разделены на оптически активные антиподы хроматографией на хиральном адсорбенте с химически привитыми группировками -пролина в присутствии ионов меди. Структура комплекса, образуемого иммобилизованным лигандом ( -проли-ном), комплексообразующим ионом металла и подвижным лигандом L- и О-аминокислоты с различными Р) в данной системе может быть представлена следующим образом  [c.107]

    Активный катализатор или активный растворитель. Таких примеров известно очень много в частности, большое значение имеет восстановление кетонов и замещенных алкенов в оптически активные (хотя и не оптически чистые) вторичные спирты и замещенные алканы при гидрировании в присутствии хиральных гомогенных катализаторов (т. 3, реакции 16-26 и 15-10) [68]. В некоторых случаях, в частности ири гомогенном каталитическом гидрировании алкенов (т. 3, реакция 15-10), соотношение энан-тиомерных продуктов достигает 98 2 [69]. Другими примерами служат следующие реакции реакция вторичных алкильных реактивов Гриньяра с винилгалогенидами (т. 2, реакция 10-88) в присутствии хиральных комплексов переходных металлов [70], пре- [c.157]

    Гидроформилирование [435] олефинов проводят действием моноксида углерода и водорода в присутствии катализатора, обычно карбонила кобальта, но это может быть и родиевый комплекс 436], например гидридокарбонилтрнс (трифенилфосфин) родий, или другое соединение переходного металла.В промышленности эта реакция называется оксо-синтезом, но ее можно провести и в лабораторных условиях в обычном аппарате для гидрирования. Субстраты по реакционной способности можно расположить в следующем порядке терминальные олефины с нормальной цепью>внутренние олефины с нормальной цепью> олефины с разветвленной цепью. Из сопряженных диенов получаются диальдегиды при катализе соединениями родия [437], но в присутствии карбонила кобальта образуются насыщенные моноальдегиды (вторая двойная связь восстанавливается). В молекуле субстрата могут присутствовать различные функциональные группы, например ОН, СНО, OOR, N, однако галогены, как правило, мешают реакции. Гидроформилирование тройных связей происходит очень медленно, и известно лишь небольшое число примеров таких реакций [438]. Побочно протекают альдольная конденсация (реакция 16-40), образование ацеталя, реакция Тищенко (т. 4, реакция 19-71) и полимеризация. Сообщалось о стереоселектпвном син-присоединении (см., например, [439]). С помощью хиральных катализаторов проведено асимметрическое гидроформилирование [440]. [c.211]

    Одни из путей повьппения эффективности асимметрического синтеза состоит в использовании каталитических количеств хирального агента. Наиболее общим нз известных в настоящее время энантиоселективных каталитических методов является применение хиральньгх комплексов переходных металлов. Известно, что ионы металлов способны катализировать многие органические реакции и путем варьирования природы металла, органических лигандов и хиральных добавок, можно направить пространственное течегше реакции ирактически ио любому нужному пути. [c.696]

    Известны хиральные С.р., образующие с энантиомерными субстратами аддукты, в к-рых протоны диастереомерны и поэтому дают раздельные сигналы. Примером могут служить комплексные соед. лантаноидов с проиааодными камфоры, в частности /и/)ыс-(3-алкоксиметилен-(-1-)-камфо-рато)лантаноид(Ш) [II, К = С(СНз)з, СзР, и др.]. При исследовании олефинов используют смесь обычного С.р. с солью переходного металла МХ (где М-А , Р<1, кЬ, Х-КОз, СРзСОО и др.). Последняя служит мостиком между олефином и С.р., поскольку металл М образует с олефином л-комплекс, а анион X координируется со С.р. [c.307]

    В то же время ХНФ на основе комплексов металлов пригодны для разделения соединений со значительно меньшей полярностью, а следовательно, и большей летучестью. Поскольку способность к координации с атомом металла обнаружена даже у простых алке-нов, не говоря уже о других соединениях с электронодонорными орбиталями (простые и сложные эфиры, тиоэфиры, и т. д.), многие соединения можно разделять, не переводя их в какие-либо производные. Это означает, что такие колонки часто могут успешно эксплуатироваться при относительно низких температурах. Как будет показано в дальнейшем, капиллярные колонки с ХНФ такого типа наиболее пригодны для анализа газовой фазы (например, при изучении синтеза хиральных алкенов). Кроме того, они весьма полезны при исследовании различных хиральных ферромонов. [c.98]

    Способность металлов образовывать комплексы используется в целях разделения энантиомеров уже давно. Основополагающие работы в этой области вьшолнены Даванковым, который еще в 1970 г. опубликовал первые исследования о новом методе — хиральной лигандообменной хроматографии (ХЛОХ) [108—110]. Предложенный им метод предусматривает закрепление L-пролина на хлорметилированном сополимере стирола с дивинилбензолом и [c.141]

    Тройные комплексы должны обладать достаточной стабильностью, а этому условию отвечает только ограниченный круг рацемических соединений. Поскольку предпочтительными являются пятичленные хелатные кольца, наиболее прочные комплексы образуют такие соединения, как а-амино- и а-оксикислоты. Не удивительно, что (З-аминокислоты (образующие шестичленные хелатные кольца) трудно поддаются разделению методом ХЛОХ [1П]. Прочность комплекса зависит и от числа функциональных групп в молекуле лиганда, связанных с атомом металла. Вследствие этого бидентатные лиганды, например нейтральные аминокислоты, лишенные других полярных заместителей, показывают при хроматографировании на полистирольных сорбентах, содержащих l-Рго или l-HO-Рго-хиральные лиганды, порядок выхода энантиомеров обратный тому, который наблюдается, например, для кислых аминокислот (Asp, Glu) (у этих аминокислот с ионом металла могут координироваться три группы). [c.143]

    Разработаны и подробно исследованы методы нековалентной иммобилизации комплексов аминокислот с металлами, обусловленной гидрофобными взаимодействиями с обращенно-фазовым сили-кагелевым сорбентом (алкилсиликагелем). И хотя некоторые из этих методов не требуют добавления хирального селектора в подвижную фазу [130], их следует рассматривать как пограничные по причине их сходства с другими методами, основанными на сочетании обращенно-фазовых нехиральных колонок и подвижных фаз, содержащих хиральные добавки, и мы их рассмотрим в разд. 7.3. [c.146]

    Многие из уже описанных принципов образования ковалентносвязанных хиральных фаз можно реализовать путем добавления хирального селектора в подвижную фазу. Все системы такого типа можно разделить на три группы системы, в которых происходит образование комплексов металлов (ХЛОХ), системы с добавками различных незаряженных соединений и, наконец, ион-парные системы, предназначенные для разделения заряженных соединений. [c.157]

Таблица 7.11. Хиральные комплексы металлов, используемые как добавки в подвижную фазу при разделении оптических изомеров методом ХЛОХ Таблица 7.11. Хиральные комплексы металлов, используемые как добавки в <a href="/info/5672">подвижную фазу</a> при <a href="/info/373566">разделении оптических изомеров</a> методом ХЛОХ
    Для разделения соединений этого типа был использован целый ряд методов ЖХ, два из которых представляют особенный интерес, поскольку не требуют предварительной дериватизации. Один из этих методов, основанный на образовании комплексов с металлами, применим лишь к ограниченному кругу соединений. В основу другого, более общего, метода положены два различных варианта хиральной ион-парной хроматографии. В одном из них ахиральный сорбент сочетается с хиральным противоионом (разделение диастереомерных ионных пар), в другом — хиральный сорбент сочетается с ахираль-ным противоионом (разделение хиральных ионных пар, см. разд. [c.199]

    Были синтезированы и разделены на антиподы диастереомер-ные пары комплексов типа ( )-дихлоро (алкен) (амин) Й, где амин— (5)-и-метилбензиламин, а алкен — пропен, (/ )-бутен-2 или стирол. В некоторых растворителях удалось достичь преимущественной кристаллизации одного из диастереомеров, сопровождавшейся, правда, интенсивной эпимеризацией. Показано наличие асимметрической индукции прн образовании комплексов (2)-дихлоро (алкен) (амин) Р1. Так, в случае комплексов ( )-бутена-2, ( )-гексена-3 и ( )-1,4-дихлорбутена-2, образующихся в ацетоне при комнатной температуре, избыток одного из дпастереомеров составлял 25% и более [Мб—320]. Этот результат доказывает су--шествование преимуи1,ественпой пространственной ориентации при образовании я-комплексов алкенов с металлами, причем избирательность образования той или иной структуры ( наилучшая степень соответствия ) определяется хиральным амином, выступающим в качестве соседнего лиганда. [c.325]

    При взаимодействии металлокарбенов с электронодефицитными эфирами а,р-непредельпых кислот или с электроноизбыточными простыми виниловыми эфирами с умеренными выходами образуются соответствующие циклопропаны. В этом случае образование циклопропанов является стереоспецифичной реакцией соотношение изомеров зависит от природы металла, что указывает на протекание реакции без участия свободных карбенов (схема 573) [612]. Из хиральных комплексов карбенов с помощью этой реакции были получены оптически активные циклопропаны. [c.394]

    Один из путей повьшгения эффективности асимметрическо-синтеза состоит в использовании каталитических количеств рального агента. Наиболее общим из известных в наст05пцее рмя энантиоселективных каталитических методов является при- ение хиральных комплексов переходных металлов. Извест-, чгго металлы способны катализировать многие органические и путем варьирования природы металла, органических хов и хиральных добавок можно направить пространствен-течение реакции практически по любому нужному пути. Металлокомплексный катализ растворимыми комплексами юв, в том числе и энантиоселективный, его принципы и змы подробно рассматриваются в гл. 27 (ч. 3). Здесь же мы 1ем лишь некоторые синтетические примеры каталитичес- реакций, приводящих к продуктам с высоким избытком одно-да энантиомеров. [c.85]

    Одним из первых примеров асимметрического синтеза из про-хиральных соединений, катализируемого растворенными хиральными комплексами металлов, был опубликованный в 1966 г. синтез эфира цис- и узайс-2-феиилциклопропанкарбоновой кислоты с использованием хирального комплекса шиффова основания с Си(П) (ЬХШ). Реакция протекает через карбенонц меди в хиральном окружении  [c.86]


Смотреть страницы где упоминается термин Металлов комплексы хиральные: [c.258]    [c.313]    [c.97]    [c.57]    [c.200]    [c.612]    [c.607]    [c.96]    [c.97]    [c.160]    [c.232]    [c.241]    [c.325]    [c.326]    [c.607]   
Хроматографическое разделение энантиомеров (1991) -- [ c.94 , c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов (обмен хиральных лигандов)

Комплексы металлов комплексы металлов

Металло-азо-комплексы

Металлов комплексы

Реакции асимметрической конденсации, катализируемой хиральными комплексами металлов

Фазы на основе хиральных комплексов металлов

Хиральность



© 2025 chem21.info Реклама на сайте