Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура четыреххлористого титана

    Полимеризация этилена при атмосферном давлении проводится с применением металлоорганических катализаторов. Полимеризацию этилена проводят в растворителе, в котором растворяется триэтилалюминий и четыреххлористый титан (в углеводороде). Этилен пропускают через раствор катализатора в углеводороде сначала при комнатной температуре, которую затем повышают приблизительно до 70° С. Исходный этилен должен быть очень тщательно очищен от примесей, разлагающих катализатор. Реакция проводится без доступа воздуха, так как на воздухе происходит самовоспламенение катализатора. Полимеризацию проводят непрерывным методом в реакторе с мешалкой или же в аппарате с циркуляцией реакционной массы и отводом тепла реакции при помощи холодильников. После окончания реакции реакционную массу обрабатывают безводным спиртом для удаления остатков катализатора. [c.381]


    Четыреххлористый титан при атмосферном давлении кипит лри 136 °С, плавится при —23 °С, давление его паров при различных температурах составляет [46]  [c.338]

    Полимеризация этилена может быть осуществлена при сравнительно низких температурах и давлении в присутствии катализатора, представляющего собой смесь окислов алюминия и молибдена, который требует периодической активации водородом ( Филлипс Петролеум ). Этилен также полимеризуется весьма быстро при атмосферном давлении и комнатной температуре в растворе алкана, содержащем суспензию нерастворимого продукта реакции триэтилалюминия с четыреххлористым титаном (Циглер). Оба эти процесса дают полиэтилен очень высокого молекулярного веса с исключительно ценными физическими свойствами. Характерные особенности этой реакции указывают на то, что в ней не участвуют обычные анионы, катионы или свободные радикалы. Можно полагать, что катализатор координируется с молекулами алкена это напоминает в некоторой степени действие катализаторов гидрирования, также вступающих во взаимодействие с алкенами (стр. 161—163). Механизм полимеризации такого тина рассматривается более подробно в гл. 29. [c.186]

    При синтезе ТР-оксидного слоя первый монослой получают за счет реакции гидроксильных групп силикагеля с четыреххлористым титаном с последующим гидролизом продукта парами воды и высушиванием его при температуре 180°С (см. работу 4.3). Титансодержащий кремнезем анализируют на содержание титана и гидроксильных групп. [c.107]

    Четыреххлористый титан впервые был получен в 1825 г. действием хлора при высокой температуре на титан  [c.295]

    Паро-газовая смесь из рукавных фильтров поступает в конденсаторы 4, состоящие из двух труб, соединенных внизу общим конусом, и орошаемые охлажденным четыреххлористым титаном. В верхней части каждой трубы установлены форсунки для разбрызгивания четыреххлористого титана. Полноту конденсации и улавливания твердых хлоридов определяют по интенсивности орошения и температуре газов на выходе из последнего оросительного конденсатора (она обычно не превышает 70 °С). Освобожденный от твердых частиц газовый поток направляется далее в холодильники для конденсации оставшегося четыреххлористого титана (10—20%). [c.302]

    В колонну 3 для частичной этерификации подают четыреххлористый титан из мерника 2. После заполнения колонны примерно на Vsi не прекращая подачи четыреххлористого титана, вводят бутиловый спирт из мерника 1 с такой скоростью, чтобы температура [c.306]


    Четыреххлористый титан и триизобутилалюминий при температуре — 78° С образуют растворимый темно-красного цвета комплекс [38], способ- [c.36]

    Четыреххлористый титан при кипении, а его пары и при более высокой температуре не разлагаются лишь при —2000° С наблюдается некоторое выделение хлора [8]. [c.61]

    Установлено также, что с повышением температуры наблюдается тенденция к увеличению растворимости в четыреххлористом титане хлоридов алюминия, железа и др. [c.67]

    После охлаждения реакционной трубки до комнатной температуры ее помещают в вертикальном полон ении в короткий сосуд Дьюара с сухим льдом и переносят в бокс, осушенный пятиокисью фосфора. После того как четыреххлористый углерод затвердеет, трубку вынимают из сосуда Дьюара, надрезают ее прибли.чительно посредине напильником или ножом для резки стекла и разламывают пополам. Часть трубки, содержащую продукты реакции, вновь помещают в сухой лед. Отмеряют 1 мл (берется с избытком) гексафторацетилацетона, выливают его в трубку, содержащую затвердевший хлорид металла, вынимают трубку из сухого льда и нагревают ее, держа рукой в резиновой перчатке. После того как четыреххлористый углерод расплавится, начинается реакция и появляются пузырьки хлористого водорода. Скорость их появления определяется температурой. (Четыреххлористый титан очень хорошо растворим в четыреххлористом углероде, и этот раствор весьма бурно реагирует с гексафторацетилацетоном. В связи с этим реагент следует добавлять к раствору тетрахлорида титана в четыреххлористом углероде по каплям.) Конец реакции определяется по прекращению выделения пузырьков хлористого водорода. Охлаждение трубки с содержимым и нагревание до температуры кипения с обратным холодильником позволяют удалить хлористый водород, что способствует полному хелированию некоторых металлов. Нанример, при комнатной температуре образуется монохелат ниобия, а при температуре кинения наблюдается медленное превращение в трижды хелированное соединение. Твердый остаток или помутнение обусловлены либо примесями, либо неполным превращением окисла металла. Раствор выливают в сухой калиброванный сосуд емкостью 2 мл ж смывают находящиеся на стенках капли четыреххлористым углеродом с помощью маленькой груши, соединенной с гибким капилляром. Подходящая груша и трубка придаются к хроматографическому дозатору [46]. Трубку промывают не менее пяти раз небольшими порциями четыреххлористого углерода, причем эти растворы добавляются к основному раствору. Раствор разбавляют до требуемого объема, добавляя четыреххлористый углерод, и перемешивают. Растворы, содержащие чувствительные к влаге соединения, можно, поместить в ампулы впредь до использования для хроматографического анализа. Операция требует от получаса до одного часа. [c.118]

    Каталитическая макрополимеризация изобутилена. Полимеризация изобутилена при температурах ниже —70° С в присутствии катализаторов Фриделя-Крафтса, таких как хлористый алюминий, фтористый бор и четыреххлористый титан, приводит к образованию высокомолекулярных полимеров, обладающих эластическими свойствами [63]. Внесение, например, фтористого бора в жидкий изобутилен при —80° С вызывает мгновенную, почти взрывную реакцию в противоположность этому полимеризация при температуре кипения изобутилена (—6° С) требует индукционного периода и продуктом такой полимеризации являются лшдкие масла. Увеличение температуры от —90 до —10° С вызывает уменьшение молекулярного веса полимера от 200 ООО до 10 ООО. [c.227]

    Так, известны различные методы получения полиэтилена. Первоначально промышленный метод заключался в проведении процесса при температуре около 200°С и давлении 1200—2000 атм при возбуждении реакции небольшими добавками кислорода. Однако в настоящее время полиэтилен получают при менее высоком и даже при атмосферном давлении в присутствии катализаторов. Хорошие результаты получены в случае применения в качестве катализатора триэтилалюминия А1(С2Н5)з совместно с четыреххлористым титаном Т1С14. Описано применение катализатора, состоящего из 8Юг и АЬОз с нанесенной на них окисью хрома, и др. В зависимости от условий процесса и вида катализатора получается полиэтилен с различным средним молекулярным весом, с различной степенью разветвленности цепей, степенью кристалличности и соответственно различными свойствами.  [c.562]

    Полимеризация этилена при низком давлении производится в растворителе (бензин, ксилол и др.), в котором в качестве катализатора содержатся триэтилалюминий А1 (С2Н5)з и четыреххлористый титан Т1С14. Концентрация этих веществ в растворителе составляет около 1%. При пропускании через этот раствор этилена он поглощается, полимеризация идет уже при комнатной температуре. Поскольку реакция полимеризации сопровождается выделением тепла, то раствор нагревается, и процесс ведут при несколько повышенной температуре (30—70° С), избыток же тепла отводится. В 1 л раствора происходит поглощение и полимеризация 200 л этилена в 1 ч. [c.338]


    Полярность молекулы изобутилека обусловливает большую склонность его к реакциям полимеризации под влиянием катализаторов даже при очень низких температурах. Катализаторами полимеризации изобутилена является хлористый алюминий (А1С1з), фтористый бор (ВРз) и четыреххлористый титан (Т1С)4). Молекула полиизобутилена имеет строение  [c.109]

    Меркаптаны способны присоединяться к различным веществам. Этантиол образует гидрат СаНдЗН-18Н2О, стабильный при низких температурах. В литературе имеются сообщения об образовании комплексных продуктов с хлористым алюминием, четыреххлористым титаном, фтористым бором, фтористоводородной кислотой, окисью азота и мочевиной (продукты соединения с мочевиной дают только производные нормального строения). На свету этантиол разлагается на этилдисульфид, водород, этилен и высшие алкены. В водных растворах тиол под действием рентгеновских, бета- и гамма-лучей обычно превращается в дисульфид. Термическое разложение первичных и вторичных тиолов, легко протекающее при температуре выше [c.269]

    В качестве растворителя при хлорировании в растворе используют галогенированные углеводороды, в особенности СС14, СНО3, С2Н2СЦ и дихлорбензол. Ускорению реакции способствует повышение температуры или облучение светом с длинами волн 2000— 6500 А. Каталитическое действие оказывают перекиси [67], азосоединения [68], четыреххлористый титан [69] и т. д. Хлорирование в растворе осуществляют при нормальном [67—73] или повышенном давлении [74]. [c.133]

    Четырех горлую колб у емкостью 1 л снабжают механической мешалкой, термометром и системой продувки азотом. Вал мешалки пропускают через вакуумный уплотнитель на конец мешалки насаживают лезвие от безопасной йритвы из нержавеющей стали или полоску тефлона (30 мм), вырезанную так, чтобы она плотно прилегала к дну, колбы. Прибор сушат в течение 1 час при 120° и затем 30 мин продувают очищенным азотом (примечание )), одновременно охлаждая колбу (примечание 2). С помощью медицинского шприца вводят четыреххлористый титан (0,9 мл, 1,55 г. 8 ммоль) Дно колбы охлаждают снаружи до 0°. Так как реакция между триэтилалюминием и водой протекает очень энергично, в качестве охлаждающей банк используют смесь сухого льда. и диметоксиэтана. Раствор триэтилалюми-ния (3,3 мл, 2,7 г, 24 ммоль) в Б мл гептана дoбaJBЛяют по каплям в течение 20 мин при медленном размешивании (40—60 об/мин) через маленькую капельную воронку с уравновешиванием давления ) Когда прибавление закончено, охлаждающую баню снимают и перемешивание продолжают еще 30 мин при комнатной температуре. Подобным же образом в систему вводят 400 лиг стирола (примечание 3). Затем температуру поднимают до 50°, а скорость перемешивания доводят до 120 об/мин. [c.9]

    Схема совместной конденсации состоит в том, что выходящую из реактора парогазовую смесь резко охлаждают и из нее одновременно конденсируются твердые и жидкие хлориды. Охлаждение проводят в оросительных конденсаторах, где в качестве орошающей жидкости используется охлажденный четыреххлористый титан. Оросительный конденсатор состоит из двух труб, соединенных внизу общим конусом. В верхней части каждой трубы установлены форсунки для разбрызгивания T1 I4. Полнота конденсации и улавливания твердых хлоридов определяется плотностью орошения и температурой газов на выходе из конденсатора (последняя обычно не превышает 70 °С). Освобожденный от твердых частиц газовый поток направляют в холодильники для конденсации оставшегося Ti li (10—20%). Первые по ходу холодильники охлаждают водой, последний — рассолом. [c.555]

    Очищенный от S1 I4 и летучих компонентов четыреххлористый 1итан поступает во вторую ректификационную колонну, где, проходя через насадку, освобождается от оксихлоридов титана и других высококипящих примесей. Температура в верхней части колонны составляет 136 °С. Очищенный четыреххлористый титан содержит около 0,004% V, 0,006% Si, 0,004% Fe, 0,004% Al, 0,001-0,002% О2. [c.558]

    Четыреххлористый титан бурно реагирует с водой с выделением большого количества тепла. Вначале образуются гидраты, а затем начинается гидролиз с образованием метатитановой кислоты НгТЮз и соляной кислоты. В избытке воды образуется пятиводный четыреххлористый титан Ti l4-5H20, а при низких температурах [c.732]

    Треххлористый титан можно также получить взаимодействием меси из двуокиси титана или ильменита и угля с газообразным Ti U при 800°. Образующуюся смесь Ti ls, СО и непрореагировав-иего Ti U быстро охлаждают до температуры ниже 650°, и отделяют твердый треххлористый титан. Охлаждение следует производить быстро, во избежание взаимодействия между непрореагировавшим газообразным четыреххлористым титаном и окисью углерода [c.746]

    Хлорирование ведут в ШЭП или хлораторах в расилаве ири температуре 850—1000°С. Количество нефтяного кокса в брикетах составляет 20—30% Извлечение полезных компонентов доходит до 997о- Таким образом, в процессе хлорирования просто и эффективно решается сложнейшая технологическая задача отделения тантала и ниобия от титана. Нелетучие хлориды РЗЭ, Са, Ма, К и др. при 450° С образуют расплав, периодически выпускаемый из ШЭП в изложницы. При этом необходимо учитывать наличие тория в плаве хлоридов и находящихся с ним в равновесии мезотория I и торона и предусмотреть соответствующие меры по вентиляции и борьбе с запыленностью. Плав хлоридов поступает на гидрометаллургическую переработку. Технический четыреххлористый титан н хлориды ниобия и тантала перерабатываются на индивидуальные хлориды. [c.86]

    В процессе хлорирования материалов, содержащих титан и железо, например таких титансодержащих руд как ильменит, путем контактирования руды с хлором и углеродом при повышенных температурах основным продуктом является четыреххлористый титан. При этом образуется также большое количество пыли, частицы которой в основном состоят из РеС1г, загрязненного ТЮг, коксом и другими оксидами и хлоридами металлов, например хлоридами магния и марганца. [c.220]

    СНа—) получают из этилена тремя способами 1) полимеризацией под давлением 1000—2000 ат при температуре 180—200 °С.с использованием в качестве инициатора небольших количеств кислорода (0,005—0,05%) 2) полимеризацией пр№ атмосферном или небольшом давлении (2—6 аг) и невысокой температуре (fiO—70 Т.). в присутствии комплексных металлоорганических катализаторов (четыреххлористый титан и триэтилалюминий) в среде жидкого углеводорода при полном отсутствии влаги и кислорода 3) полимеризацией при давлении 25— 50 ат на окисных катализаторах (СггОз СгОз и другие) н температуре uibd4iI . [c.571]

    Развивая уже упомянутую работу, Циглер [284а]. нашел, что алюминий-алкилы в сочетании с галогенидами металлов, в частности с четыреххлористым титаном, при обычных температурах и давлениях полимеризуют этилен с большой скоростью до соединения с очень высоким молекулярным весом. Образующийся полимер является линейным и легко кристаллизуется, превращаясь в высококристаллический продукт, более плотный, чел1 прежний менее кристаллический полиэтилен отсюда термин полиэтилен высокой плотности . Иногда для полимеров этих двух типов соответственно применяются термины полиэтилен высокого давления и полиэтилен низкого давления (старый материал обычно изготовляется под давлением в несколько тысяч атмосфер, а новый полиэтилен получают при одной атмосфере). [c.273]

    Полимеризация бутиленов. Для избирательной полимеризации при комнатной температуре изобутилена из смеси с другими олефиновыми углеводородами используется фтористый бор, четыреххлористый титан и хлористый алюминий [128]. Для полимеризации изобутилена при температурах ниже —20° могут быть использованы дымящая серная и галоидсульфоновая кислота [170]. Эванс и др. [40] показали, что полимеризация бутиленов в присутствии фтористого бора отмечается только при добавлении сокатализатора, которым может служить уксусная кислота. [c.382]

    Четыреххлористый титан плавится при —23° С [6], а кипит при 135,8° С (760 лшрт. ст.) [7]. Величины упругости пара Т1С14 при различных температурах приведены в табл. 3. [c.61]

    Впервые реакция между триэтилалюминием и четыреххлористым титаном была описана в работах Циглера [21, 22], где отмечалось что взаимодействие этих веществ протекает при комнатной температуре с выделением газообразных проду1 тов и осадка, содержащего углеводородные группы, хлор, алюминий и титан. [c.102]

    При изучении реакций между триизобутилалюмипием и четыреххлористым титаном были установлены аналогичные закономерности. Было показано [31], что после сливания компонентов реакции при комнатной температуре выпадает темно-коричневый осадок, состав которого в зависимости от соотношения исходных продуктов реакции приведен в табл. 9. [c.105]

    В то время как алюминийалкилы с четыреххлористым титаном взаимодействуют с большими скоростями, реакции их с треххлористым титаном протекают значительно медленнее. До последнего времени не было ясно, какие же основные химические реакции происходят между этими соединениями при образовании каталитического комплекса. Некоторые исследователи утверждали, что при условиях образования этого комплекса алюминийтриалкил сорбируется главным образом на поверхности треххлористого титана. Другие же авторы указывали, что химические реакции протекают только при повышенных температурах [15, 31, 33, 37]. Нанример, Болдыревой с сотрудниками при изучении реакции триэтилалюминия с треххлористым титаном фиолетовой модификации показано [15], что этот вид треххлористого титана проявляет очень слабую активность по отношению к триэтилалюминию. Коричневая модификация Ti lg, образующаяся при взаимодействии четыреххлористого титана с алюминийалкилами, гораздо более реакционноспособна по отношению к А1(С2Н5)з, чем фиолетовая, что обусловливается, как утверждают авторы, различиями в кристаллической структуре [c.109]

    Более детальное изучение этой реакции было проведено, как и реакции алюминийалкилов с четыреххлористым титаном, Симоном с сотрудниками [39]. На основании проведенных опытов они пришли к выводу, что Ti lg реагирует с триэтилалюминием как при повышенных (70—110° С), так, в известной мере, и при комнатной температурах. При этом продукт, образующийся в результате реакций, является катализатором полимеризации олефинов. Авторами установлено, что температура реакции, время измельчения треххлористого титана и молярное соотношение компонентов этой реакции влияют на состав осадка только в первые 4—10 ч. С увеличением времени реакции состав осадка практически не изменяется. Наряду с этим показано, что в результате реакции триэтилалюминия с треххлористым титаном происходит газовыделение. [c.110]

    К этой суспензии добавляется четыреххлористый титан. При взаимодействии изоамилнатрия с четыреххлористым титаном образуется каталитический комплекс. Суспензия каталитического комплекса переводится в реактор с растворителем, куда при давлении 5 ат подается очищенный этилен. После окончания реакции разложение каталитического комплекса проводится этиловым или изопропиловым спиртом. После разложения катализатора суспензия полимера фильтруется 0"р растворителя. После промывки полимера спиртом проводится водная промывка и сушка полимера воздухом. Особенностью полиэтилена, полученного с изоамилнат-рием, является его высокая температура плавления, которая составляет 196—208° С в атмосфере инертного газа полимер плавится при 300° С. Полимер, расплавленный при 200° С, при повторном нагревании плавится при 130° С, т. е. как и обычный полиэтилен. Полиэтилен, полученный по методу Неницеску, по-видимому, обладает сшитой структурой, с чем и связана его высокая температура плавления. Это подтверждается спектрами, где отсутствуют полосы, соответствующие двойным связям. Кристалличность полиэтилена невысокая и составляет 50%, мол. вес около 1 ООО ООО и плотность 0,95—0,96, предел прочности на разрыв 230— 290 кг/сж . Молекулярный вес может варьироваться, применяя различные соотношения компонентов катализатора, в пределах от 200000 [c.80]

    Газовая хроматография, интенсивно развивающаясй в последнее время [21], может найти более широкое применение в качестве способа аналитического выделения примесей из чистых веществ. Газовая хроматография с использованием обычных методов детектирования неоднократно привлекалась для идентификации органических загрязнений в жидких полупродуктах синтеза чистейших металлов. В качестве примера можно привести газохроматографический метод определения до 10- —10 объемн.% хлорорганиче-ских примесей в четыреххлористом титане [2]. С увеличением максимальной температуры процесса растет круг объектов анализа и появляется возможность выделения неорганических примесей. Интересной представляется, например, попытка прямого газохроматографического определения малых содержаний кадмия в сплавах (температура процесса разделения 800—1000° С) [757]. Вполне мыслимо сочетание газохроматографического метода разделения анализируемой (летучей) неорганической смеси с детектированием индивидуальных веществ по эмиссионному спектру составляющих их элементов. [c.318]

    Т1С12. Четыреххлористый титан и титановую стружку запаивают в толстостенной откачанной кварцевой трубке и нагревают в слегка наклонном положении так, чтобы металл находился при 800—900°, а жидкий Т1С14— при соответствующей более низкой Температуре. После окончания реакции всю трубку для гомогенизации содержимого нагревают еще несколько суток при 600—700° [18] (см. также стр. 509). [c.552]


Смотреть страницы где упоминается термин Температура четыреххлористого титана: [c.118]    [c.136]    [c.92]    [c.543]    [c.557]    [c.559]    [c.732]    [c.304]    [c.199]    [c.142]    [c.103]    [c.111]    [c.80]    [c.108]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.543 ]




ПОИСК





Смотрите так же термины и статьи:

Четыреххлористый



© 2024 chem21.info Реклама на сайте