Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция на поверхности жидкости, смачивание

    Адсорбция на поверхности жидкости, смачивание [c.227]

    Основное внимание физическая химия уделяет изучению законов протекания химических реакций. В связи с этим, в первую очередь, необходимо изучение условий равновесия химических реакций и зависимости их направления от таких параметров, как температура, давление, концентрация. Это является предметом химической термодинамики. Скорости, с которыми совершаются химические превращения, и причины, приводящие к ускорению или замедлению реакций, изучает химическая кинетика и катализ. Большое место в физической химии занимает изучение строения атомов и молекул и состоящих из них жидкостей и твердых тел. Все возрастающее значение приобретает в последние десятилетия физическая химия процессов, развивающихся на поверхностях жидкостей и твердых тел, например смачивание, адсорбция. Эти процессы особенно важны для систем с высокоразвитой поверхностью, таких, например, как туманы, активные угли с огромной внутренней поверхностью, характеризующейся большим числом микроскопических пор и каналов. Это направление физической химии стало самостоятельной наукой — коллоидной химией. [c.12]


    К явлению адсорбции близки явления смачивания, также определяющиеся интенсивностью взаимодействия между молекулами различных веществ. Рассмотрим явления смачивания на примере капли жидкости, нанесенной на поверхность твердого тела, хотя, конечно, можно говорить и о смачивании жидкости жидкостью. [c.153]

    Поверхность имеет избыток свободной энергии по сравнению с объемом за счет нескомпенсированных химических связей находящихся на ней частиц. Как следствие универсального стремления систем к минимуму свободной энергии имеют место следующие явления поверхностное натяжение, коалесценция жидкостей, адсорбция, прилипание и смачивание и др. При нагреве кристаллов уже при температурах 0,4 от температуры плавления обнаруживается перестройка конденсированной фазы типа поверхностного оплавления. Очевидно, что появление даже очень тонкой жидкой пленки способно существенно изменить диффузионные процессы, повлиять на каталитические и адсорбционные свойства материала. [c.50]

    Адсорбция ПАВ улучшает смачивание поверхности той жидкостью, из которой происходит преимущественная их адсорбция. Таким образом, изменение смачивания поверхности под действием ПАВ является прямым следствием адсорбции ПАВ. [c.180]

    Величина угла смачивания зависит от того, какая поверхность твердого тела, сухая или предварительно смоченная, приходит в соприкосновение с жидкостью. Например, при погружении сухой стеклянной пластинки в воду угол смачивания больше, чем при вынимании пластинки из воды. Это явление носит название гистерезиса смачивания. Природа его не вполне ясна. Возможно, что этот гистерезис обязан своим происхождением адсорбции поверхностью твердого тела вещества, в том числе и воздуха. [c.18]

    I Кроме воздуха, на протекание процессов смачивания твердых тел существенно влияют адсорбированные их поверхностью пары воды (или других жидкостей). На поверхности всех так называемых воздушно-сухих твердых тел всегда содержится некоторое количество сорбированного из воздуха водяного пара. Вследствие этого поверхностная энергия твердого тела на границе с воздухом о -г изменяется по сравнению с таковой абсолютно сухих твердых тел. Капля воды, нанесенная на поверхность, сорбировавшую влагу из воздуха, прежде всего будет взаимодействовать не непосредственно с твердой поверхностью, а с адсорбционным водным слоем. Это при-. водит к понижению гистерезиса смачивания [31]. Однако если с твер- М дой поверхности предварительно удалить сорбированные пары воды, г то в процессе смачивания они вновь адсорбируются поверхностью Х) из соприкасающегося с ней объема воды, по-видимому, вследствие миграции молекул по поверхности. Процесс адсорбции поверхностью паров смачивающей жидкости по истечении достаточного времени I приведет к образованию на всей ее площади устойчивого моно-м или даже полимолекулярного адсорбционного слоя. При этом совсем не обязательно, чтобы жидкость смачивала данное твердое тело. [c.17]


    До термообработки разрыхленная структура полимерной пленки, имеющая высокоразвитую межфазную поверхность, была относительно стабильна в жидкой среде. Стабильность структуры пленки, деформированной в физически активной жидкости, обусловлена адсорбцией молекул жидкости на поверхности полимера, существенно снижающей межфазное натяжение в двухфазной системе. Повышение температуры, как известно, также снижает поверхностное натяжение жидкостей и твердых тел, причем взаимодействие жидкости и полимера на межфазной границе не претерпевает существенных изменений, о чем свидетельствует отсутствие температурной зависимости краевого угла смачивания фторполимеров н-алканами [90]. Улучшение смачиваемости фторполимеров н-алканами при температуре, близкой к температуре кипения жидкости, может рассматриваться как кос ренное доказательство энергетической невыгодности процесса сокращения поверхности межфазного контакта в системе полимер - жидкость при нагревании до температуры капсулирования. [c.70]

    Более сложны случаи, когда атг > Отж + Ожг. Для анализа влияния адсорбции на смачивание в таких системах удобно воспользоваться коэффициентом растекания 5 = атг — Отж — Ожг [29]. При Отг > (Ттж + Ожг начальный коэффициент растекания 5н > О, поэтому жидкость будет растекаться по твердой поверхности и смоченная площадь будет увеличиваться. Одновременно с растеканием происходит адсорбция молекул жидкости на поверхности твердого тела впереди периметра смачивания. Перенос молекул жидкости может осуществляться различными путями — через газовую фазу и по поверхности твердого тела. Адсорбция приводит к снижению поверхностного натяжения твердого тела на границе с газом до величины а , соответственно, коэффициент растекания 5 уменьшается. При этом в зависимости от особенностей адсорбции могут иметь место три случая [30]  [c.33]

    Теоретический анализ влияния поверхностных сил на равновесие полимолекулярных слоев и на краевые углы показал, что на устойчивость тонких слоев большое влияние оказывает природа жидкости [19]. У неполярных органических жидкостей при увеличении давления паров адсорбция возрастает постепенно и при Р Рв г -> оо. Другими словами, переход от адсорбционного монослоя к макроскопической жидкой пленке происходит непрерывно. При адсорбции полярных жидкостей (прежде всего —воды) полимолекулярный слой имеет даже в области больших давлений конечную толщину [38]. Такое поведение обусловлено тем, что вблизи поверхности твердого тела в тонком слое жидкости образуется особая (ориентированная) структ) ра. Эта прослойка толщиной 10- —10-5 см называется граничной фазой она отделена от обычной (объемной) жидкой фазы резкой границей. При смачивании этой границей является периметр (линия) смачивания. В случае образования таких граничных фаз изотерма адсорбции имеет форму, показанную на рис. 1.9, е. [c.38]

    При смачивании реальных твердых тел краевые углы по различным причинам отличаются в той или иной степени от равновесного краевого угла, определяемого уравнением Юнга (1.4) или (с учетом адсорбции вещества жидкости на подложке) уравнением (1.29). Более того, при смачивании одной и той же твердой поверхности при одних и тех же значениях термодинамических параметров системы (температура, давление и т, д.) статические крае- [c.46]

    Адсорбция ПАВ на поверхности жидкости, происходящая до начала ее контакта с твердым телом. Для этой цели заранее растворяют ПАВ в жидкости. В результате происходит снижение поверхностного натяжения жидкости а г и, как следствие, изменение краевого угла при контакте раствора с твердым телом. Этот метод применяется в тех случаях, когда нельзя заранее изменить поверхностные свойства твердого материала. Например, этот метод широко используется в сельском хозяйстве для смачивания гидрофобных поверхностей (листьев и т. д.) дезинфицирующими растворами. [c.165]

    При растекании поверхность жидкости непрерывно увеличивается (в условиях натекания). Соответственно изменяется и удельная адсорбция. Прежнее (до изменения площади) значение адсорбции может восстановиться за счет молекул ПАВ, которые поступят из объема раствора к поверхности вследствие диффузии. Таким образом, фактическое значение адсорбции зависит от со-отнощения скорости формирования адсорбционного слоя (в простейшем случае — от скорости диффузии молекул ПАВ) и скорости увеличения поверхности жидкости (т. е. от скорости смачивания). В подобных (динамических) условиях поверхностное натяжение раствора может быть значительно выше, чем в статических условиях (при неизменной поверхности жидкости). В результате повышения поверхностного натяжения жидкости изменится и движущая сила растекания. [c.200]


    Наиболее существенным при экспериментальном определении краевых углов являются различия в их значениях для данной системы в зависимости от того, стремится ли жидкость распространиться по сухой поверхности, или наоборот, отступить с поверхности, уже смоченной данной жидкостью. При этом практически во всех случаях угол натекания больше угла оттекания . Эта разница часто остается заметной даже после того, как движение жидкости по твердой поверхности прекращается. С точки зрения энергетических соотношений, которые определяют существование краевого угла, подобный гистерезис смачивания следует рассматривать скорее как явление неравновесное. В некоторых случаях, однако, имеется постоянное различие в значениях краевого угла в зависимости от того, находились ли данные твердое тело и жидкость в соприкосновении или нет, прежде чем были проведены измерения. Другими словами, работа адгезии меньше для сухой твердой поверхности, чем для той же Поверхности, ранее смоченной жидкостью. Это связано, возможно, с тем, что при первоначальном их контакте происходит адсорбция части жидкости, изменившая характер поверхности твердого тела. В общем, чем чище поверхность твердого тела, тем слабее выражен гистерезис между углами натекания и оттекания. Из этого следует, что большие значения краевого угла натекания вызываются наличием пленки загрязнений на твердой поверхности. Образование такой пленки может быть вызвано даже адсорбцией газов воздуха и, следовательно, иметь место даже при самых тщательных измерениях [c.253]

    Приведенный выше материал рассматривался в связи с общими факторами, имеющими значение при ионообменных реакциях (физико-химические и структурные свойства адсорбента и адсорбтива). Как известно из многочисленных примеров, немалую роль в адсорбционных процессах играет растворитель, свойства которого влияют на скорость процесса и установление окончательного равновесия. До сих пор недоставало экспериментальных результатов, чтобы выяснить внутреннюю связь между физическими и химическими константами растворителя и устанавливающимся равновесным распределением. В последних работах пытались найти зависимость между адсорбированным количеством и диэлектрической постоянной растворителя , его дипольным моментом, теплотой смачивания, выделяющейся при контакте растворителя с адсорбентом, изменением поверхностного натяжения, вызванным адсорбированным веществом на поверхности раздела вода — растворитель. До недавнего времени два основных типа адсорбции — молекулярную и ионообменную — четко не разделяли. Разбросанный экспериментальный материал, приведенный в литературе (краткий обзор дан в статье Фукса Успехи хроматографических методов в органической химии ), к сожалению, недостаточно характеризует системы ни относительно адсорбента, ни относительно адсорбтива, так что часто нельзя принять правильного решения даже относительно имеющего место типа адсорбции. Вообще на основе этого ограниченного материала об обменных реакциях в неводных растворителях можно сказать, что электролиты, растворенные в жидкостях, подобных воде (спирт, ацетон), при контакте с ионитами ведут себя, как правило, так же, как в водных растворах. Но иногда последовательность расположения ионов изменяется в зависимости от прочности связи с обменником и тем са.мым вытесняющей способности иона. Еще меньше систематических исследований по обменной адсорбции в жидкостях, несходных с водой (бензол и др.). Однако интересно отметить, что незначительная добавка воды к бензолу, вызывая незначительную диссоциацию, способствует обменной адсорбции. Очевидно, также растворимость воды в соответствующем растворителе имеет значение для из- [c.352]

    Лиофильность и лиофобность характеризуют способность молекул, находящихся на поверхности, к межмолекулярному взаимодействию с жидкостью. Сильное взаимодействие с жидкостью соответствует лиофильной поверхности слабое взаимодействие — лиофобной поверхности. В случае взаимодействия с водой (наиболее практически важном) говорят о гидрофильности и гидрофобности поверхности. Количественной мерой гидрофильности и гидрофобности может служить энергия взаимодействия воды с поверхностью твердого тела, которую в ряде случаев можно определить по теплоте адсорбции, смачивания и другими способами. Гидрофиль-ность и гид -фо С ность поверхности можно также оценить по величине угла смачивания воды (в). Для предельно гидрофильных поверхностей вода растекается по поверхности в 0°). При полном отсутствии межмолекулярных взаимодействий воды с поверхностью угол смачивания воды составлял бы 156° [51]. Однако, поскольку интенсивность межмолекулярных дисперсионных взаимодействий на границе раздела фаз никогда не равна нулю, экспериментальные значения угла смачивания несколько ниже. Так, максимальный наблюдаемый угол смачивания воды на гладких поверхностях составляет в 120 4- 125°. Для шероховатых поверхностей возможны и более высокие значения угла (вплоть до 180°). Смачивание шероховатых поверхностей определяется, главным образом, не химией, а топографией поверхности. [c.262]

    Об изменении характера взаимодействия твердой поверхности со смачивающей жидкостью в результате адсорбции ПАВ можно судить но работе смачивания И7(. . Работа смачивания определяется как разность ат-г — сгт-ж- Поскольку достаточно надежных методов измерения поверхностного натяжения на границе с твердыми телами нет, для расчета удобнее использовать следующее уравнение  [c.22]

    Поверхностное натяжение играет большую роль при электролизе расплавленных солей, поскольку процессы, протекающие на электродах (аналогично электролизу водных растворов), часто связаны с адсорбцией. Возможность слияния малых капель жидкого металла на катоде и в расплаве является функцией поверхностного натяжения. Степень пропитывания футеровки ванн электролитом, смачивание поверхности твердого тела жидкостью (в нашем случае — жидким металлом или расплавом) также связаны с поверхностным натяжением,. Оно служит причиной захвата значительной доли электролита твердым катодным осадком и явления анодного эффекта — важного для электролиза расплавов. [c.473]

    Если теплота смачивания характеризует отношение к поверхности твердого тела чистой жидкости, то теплота адсорбции связана с поглощением поверхностно-активного вещества, находящегося в растворе этой жидкости. Следовательно, при действии раствора поверхностно-активного вещества на адсорбент выделяется суммарная теплота [c.143]

    С целью устранения гистерезиса, происходящего в результате адсорбции воздуха, методику определения краевого угла можно видоизменить следующим образом. Пластинку твердого вещества вводят в стеклянную кювету с жидкостью и после полного смачивания ее поверхности устанавливают в горизонтальном положении. Затем под пластинку, не вынимая ее из л<идкости, с помощью пипетки с загнутым концом вводят пузырек воздуха. Далее определение краевого угла, который и в этом случае измеряют со стороны жидкости, проводят так же, как было описано выше .  [c.159]

    Л. Г. Гурвич 1 рассматривает адсорбцию как проявление физико-химической силы притяжения между молекулами. За меру этой силы Л. Г. Гурвич принимает теплоту смачивания последняя зависит от природы жидкости и адсорбента. При одном и том же адсорбенте больше всего выделяют тепла вещества с двойными связями, за ними соединения, содержащие кислород, азот и серу, меньше всего тепла выделяют алканы и цикланы. Среднее место занимают ароматические углеводороды. Иллюстрацией тому служат следующие данные Л. Г. Гурвича о теплоте адсорбции разных растворителей на поверхности алюмосиликатного адсорбента. [c.145]

    Адсорбционно связанная вода, соответствующая в основном мономолекулярному слою. В зависимости от природы поверхности изотермы адсорбции водяного пара отличаются одна от другой, что связано с величиной краевого угла смачивания или с непрерывным переходом от монослоя при увеличении его толщины к толстой пленке объемной жидкости, т. е. к свободной воде. [c.98]

    Круг явлений, в которых решаюпгую роль играют поверхностные процессы, широк и разнообразен. Это в первую очередь поверхностное натяжение на границе раздела жидкости и газа, стремящееся стянуть эту поверхность до минимального размера и приводящее к сферической форме капель и пузырьков газа в жидкости поглощение газов и растворенных веществ на поверхности твердых тел—адсорбция способность жидкостей растекаться по поверхности твердых тел (смачивание) явления прилипания и трения возникновение электрического потенциала при погружении металла в раствор электролита и многие другие. [c.306]

    Рассмотренные законпме Ност смачивания выполняются на всех поверхностях жидкостей только на идеально гладких и однородных поверхностях твердых тел. На поверхности реальных твердых тел обязательно имеются шероховатости, неоднородности, поры, трещины и т. д., которые влияют на краевой угол и затрудняют определение равновесных краевых углов. Отклонения статических краевых углов от равновесных значений характеризуются гистерезисом смачивания, анализ которого позволяет вскрыть его причины. Эти причины могут быть различными загрязнение поверхности твердых тел, протекаю- цие процессы испарения, растворения, адсорбции и т. л. [c.87]

    При понижении поверхностного натяжения растворенные вещества концентрируются на поверхности жидкости, происходит адсорбция веществ, что способствует их прилинаемости. Следствием понижения поверхностного натяжения жидкостей является равномерное смачивание объектов, повышение прилинаемости и увеличение количества яда на их поверхности. [c.12]

    Произведение ожгсоз нередко называют энергией смачивания или адгезионным напряжением. Работа адгезии тем больше, чем сильнее взаимодействие контактирующих фаз. Поскольку смачивание связано с адсорбцией части жидкости на поверхности твердого тела, которая не может быть удалена, значения определяемой работы адгезии обычно меньше на величину я  [c.32]

    Для выяснения доли участия отдельных явлений (расклинивающее давление в тонких Слоях жидкости, смачивание и адсорбция ПАВ на границе раздела твердое тело — раствор, капиллярные эффекты в пенах) в суммарном процессе удаления частиц пыли проводили опыты по очистке запыленных пластин водой, раствором моющего вещества и пеной (в последнем случае пену удаляли водой или раствором моющего вещества, содержащим сульфонол НП-1 и тринатрийфосфат в весовом отношении 1 1). Время выдержки очищающей жидкости на поверхности составляло 1 мин. Полученные данные приведены в табл. 19. [c.166]

    Сушествуют также методы измерения удельной поверхности катализаторов, основанные на адсорбции из жидкой фазы, например, чистого вещества или двухком-понентиого раствора. В случае применения в качестве адсорбата индивидуальной жидкости удельную поверхность вычисляют по количеству выделяющейся теплоты смачивания, а в случае адсорбции компонентов растворов— ио уменьшению концентрации наиболее сильно адсорбирующегося компонента. [c.86]

    Поверхностно-активные вещества всегда улучшают избирательность смачивания поверхности той жидкостью, из которой происходит адсорбция. Поэтому водорастворимые деэмульгаторы способствуют усилению коррозии. Это подтвердилось работой [102] по оценке коррозионного действия эмульсии В/Н с добавкой различных деэмульгаторов в условиях подготовки нефти при 80° С. Наименее коррозионноагрессивна нефть с нефтерастворимым дипроксамином 157, а наиболее — с водорастворимыми деэмульгаторами. [c.159]

    Влияние ПАВ на смачивание зависит от того, иа какой поверх Юстп раздела фаз они адсорбируются. Молекулы ПАВ могут адсорбироваться как на твердой иоверхности, гак и на границе раздела жидкость— газ. Если поверхность твердого тела гидрофобная, то из водных растворов ПАВ адсорбируются и на твердой поверхиости, и на границе раствор — воздух. На межфазной поверхности молекулы ПАВ располагаются в соответствии с правилом уравнивания полярностей ебиндера. В результате значения Стт-ж и а -г уменьшаются и согласно уравнению (I. 13) поверхность твердого тела смачивается лучше. С увеличением адсорбции ПАВ твердая поверхность становится менее гидрофобной, происходит так называемая гидрофилизация пове])Х ьаст[  [c.21]

    Изменение концеитрацин жидкости при взаимодействии с твердой фазой вблизи границы раздела фаз невелико вследствие малой сжимаемости. Однако даже эти незначительные изменения приводят к особым свойствам связанной полем твердой частицы жидкости. В промывочных жидкостях дисперсионная среда редко бывает чистой . Оиа состоит из собственной жидкости, а также растворенных в ней ионов и молекул, адсорбирующихся одновременно с растворителем. Последнее затрудняет создание общей теории адсорбции па твердой поверхности, учитывающей также межмолекулярное взаимодействие в жидкой фазе. Поэтому при анализе явлений на границах раздела твердое—жидкость рассматривают отдельно смачивание и адсорбцию растворенных веществ (нейтральных молекул — молекулярная адсорбция и ионов — адсорбция электролитов). [c.47]

    Явление смачивания можно наблюдать и тогда, когда вместо воздуха взята вторая жидкость, не смешивающаяся с первой и имеющая меньшую плотность. Если каждая из двух жидкостей может смачивать поверхность, то, очевидно, между ними будет происходить конкуренция, аналогичная конкуренции при адсорбции двух адсорбтивов. Исходя из того, что смачивание определяется соотношением молекулярных сил, действующих между молекулами каждой отдельной жидкости, с одной стороны, и между молекулами жидкостей и молекулами твердого тела, с другой стороны, нетрудно видеть, что из двух жидкостей смачивать поверхность будет та, значение полярности которой ближе к полярности твер-догв тела. О жидкости, лучше смачивающей поверхности, говорят, что она. обладает большим избирательным смачиванием по отношению к данной поверхности. [c.157]

    Теплота смачивания. Смачивание есть адсорбция жидкости твердым телом, обусловленная силами электрического притяжения. Теплота с.мачивания пропорциональна реагирующей поверхности и увеличивается с ее возрастанием. Для определения теплоты смачивания пригодны калориметры различной конструкции, но с высокой чувствительностью измерительных ячеек (например, ТПИ-НИСИ). [c.173]

    Инверсия смачивания зa лючaeт я в качественном ее изменении за счет адсорбции ПАВ на твердой поверхности. Путем добавления ПАВ удается гидрофилизировать гидрофобные поверхности и вызывать их смачивание нодой и другими полярными жидкостями либо придавать гидрофобные свойства первоначально гидрофильной поверхности и делать ее плохо смачивающейся водой. Адсорбция ПАВ на твердой поверхности влияет не только на величину, но и на знак os 0. Зависимость os 0 от концентрации поверхностно-активного вещества называется изотермой смачивания. Кривая пересекает ось абсцисс в точке, соответствующей такой концентрации ПАВ, при которой os 0 = 0 и происходит изменение знака OS0, Точку А пересечения изотермы смачивания с осью концентраций ПАВ называют точкой инверсии смачивания (рис. 19.11). [c.315]

    Сильно поверхностно-активные вещества (не стабилизаторы) могут быть дезмульгаторами устойчивых эмуЛьсий, т. е. способствовать их расслоению в результате коалесценции капелек. Адсорбируясь сильнее, чем стабилизатор, такие деэмульгаторы вытесняют его с поверхности капелек, но агрегативную устойчивость эмульсий они не обеспечивают, т. е. не могут предотвратить коалесценцию — слияние капелек. Адсорбируясь на твердых поверхностях, например на поверхности частичек пигментов или наполнителей, поверхностноактивные вещества второй группы могут резко изменять молекулярную природу твердой поверхности, т. е. условия ее избирательного смачивания на границе двух антиполярных жидкостей вода — масло. В результате такой ориентированной адсорбции поверхностно-активных веществ происходит гидрофобизация первоначально гидрофильных твердых поверхностей и, наоборот, гидрофилизация первоначально гидрофобных поверхностей. При этом особенно резко выражен эффект гидрофобизации он усиливается химической связью — фиксацией полярных групп поверхностно-активных веществ на соответствующих участках твердых поверхностей. Достаточно длинные углеводородные цепи, ориентированные при этом наружу, вызывают несмачивание такой поверхности водой или избирательное вытеснение воды с такой поверхности неполярной жидкостью (маслом). Такими гидрофобизато-зами являются прежде всего флотационные реагенты-собиратели. 4х задача состоит в том, чтобы в результате избирательной химической адсорбции или соответствующей поверхностной химической реакции понизить смачивание водой поверхности определенных твердых частичек, например минерала. Именно такие частички и прилипают к пузырькам воздуха в суспензии (пульпе) флотационной машины с образованием краевого угла, наибольшее гистерезисное значение которого определяет интенсивность прилипания (силу отрыва). На неокислен-ных металлах и сульфидах такими гидрофобизаторами бывают поверхностно-активные вещества со специфическими химически адсорбирующимися полярными группами, которые содержат двухвалентную серу или фосфор (например, алкил- и арилксантогенаты, тиофосфаты с металлофильными группами). [c.68]

    Влияние среды на процесс диспергирования. Среда оказывает влияние на механизм и скорость процесса диспергирования, а также на свойства измельченного вещества. В реальных условиях процесс диспергирования осуществляют или в газовой, или в жидкой среде. Поэтому он сопровождается адсорбцией молекул газов окружающей среды на свежеобразовавшихся поверхностях твердого тела или смачиванием и адгезией жидкости к свежим поверхностям твердого тела. В том и другом случае энергия Гиббса площадей раскола твердого тела от значений оо понизится до какого-то значения а. В частности, в воде более чем вдвое понижается поверхностная энергия кварца и аморфного кремнезема по сравнению с вакуумом. Примерно так же действуют ацетон, бензол, спирт. Этот факт имеет важное значение для процессов измельчения твердых тел. [c.255]


Смотреть страницы где упоминается термин Адсорбция на поверхности жидкости, смачивание: [c.277]    [c.299]    [c.9]    [c.140]    [c.259]    [c.170]    [c.115]    [c.135]    [c.124]    [c.72]   
Смотреть главы в:

Краткий курс физической химии -> Адсорбция на поверхности жидкости, смачивание




ПОИСК





Смотрите так же термины и статьи:

Адсорбция на поверхности жидкост

Смачивание



© 2024 chem21.info Реклама на сайте