Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение удельной адсорбционной поверхности

    Адсорбционные методы определения удельной поверхности адсорбентов. .................. [c.200]

    С. Брунауэр, П. Эммет и Е. Теллер (1935—1940) создали наиболее общую теорию полимолекулярной адсорбции (сокращенно — теорию БЭТ), в которой описание процессов адсорбции увязывается с представлениями и методами статистической физики. Используя ряд положений теории Ленгмюра, они сделали дополнительное допущение об образовании на поверхности адсорбента последовательных комплексов между адсорбционным центром и одной, двумя, тремя и т. д. молекулами газа. Адсорбция рассматривается как ряд последовательных квазихимических реакций со своими константами равновесия. На активных центрах поверхности адсорбента могут образоваться конденсированные полимолекулярные слои. Авторы теории на основе уравнения изотермы адсорбции Ленгмюра получили приближенное уравнение полимолекулярной адсорбции, которое щироко применяется для определения удельной поверхности адсорбентов и теплоты адсорбции. [c.338]


    Цель работы, определение степени насыщенности поверхности латексных частиц ПАВ, площади, занимаемой молекулой ПАВ в насыщенном адсорбционном слое, и удельной поверхности дисперсной системы. [c.143]

    ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ АДСОРБЦИОННОЙ ПОВЕРХНОСТИ (ГОСТ 7885—68) [c.228]

    Как уже говорилось в гл. 2, на поверхности таких непористых твердых тел, как слюда, находящихся в контакте с паром при достаточно высоких давлениях, образуется адсорбционный слой толщиной в несколько молекул — полимолекулярный слой. Во многих, а возможно, и в большинстве случаев при достижении давления насыщенного пара образуются весьма толстые адсорбционные пленки и конденсация в них проходит так же, как в жидкости. Однако, если твердое тело пористое, т. е. имеет внутреннюю поверхность, то толщина адсорбционного слоя на стенках пор неизбежно ограничивается шириной пор. В соответствии с этим изменяется форма изотермы вместо изотермы II типа мы имеем изотерму IV типа, а вместо изотермы III — изотерму V типа. В данной главе методы определения удельной поверхности и распределения пор по размерам будут обсуждаться в связи с изотермами IV и V типов. [c.142]

    Существующие адсорбционные методы определения удельной поверхности 5 твердых тел имеют ряд недостатков. Значительные трудности представляет выбор истинной площади, занимаемой молекулой адсорбата в плотном мопослое. Поэтому представляет интерес поиск новых, более надежных методов определения 5 из адсорбционных данных. [c.112]

    Опыты ПО определению удельной поверхности одного и того же адсорбента при адсорбции различных паров дали близкие результаты, в общем совпадающие с результатами определения удельной поверхности другими, не адсорбционными методами. Это подтверждает правильность толкования формы изотермы с помощью теории БЭТ. Несмотря на ряд недостатков, теория БЭТ является в настоящее время лучшей и наиболее полезной теорией физической адсорбции. [c.99]

    Как известно, для адсорбентов одной и той же природы время удерживания пропорционально поверхности. Простой способ определения удельной поверхности адсорбента газо-адсорбционной хроматографией предложила Эрика Кремер. Для одного адсорбента [c.200]

    Методика определения удельной поверхности сводится к следующему. В стеклянные ампулы вместимостью 10 мл помещают 1 г адсорбента нужного зернения и взвешивают на технохимических весах с точностью до 0,01 г. Насыпать адсорбент нужно быстро, ампулы во время взвешивания закрывают пробками, чтобы адсорбент не поглощал влагу из воздуха. Затем в ампулу вливают 4—5 мл приготовленного раствора толуола в изооктане приблизительно на 1—2 мл выше уровня адсорбента. Ампулы с адсорбентом и раствором снова взвешивают и оставляют стоять 3 ч при комнатной температуре, чтобы установилось адсорбционное равновесие между раствором толуола в изооктане и адсорбентом. После этого определяют показатели преломления растворов из каждой ампулы. [c.176]


    Величина удельной поверхности пористого тела, определенная по методу адсорбции, зависит от минимальных размеров его пор, в которые может еще проникать адсорбируемое вещество. Вследствие того, что размеры молекул газа изменяются в небольших пределах, этот метод для различных газов дает близкие величины. При определении удельной поверхности по методу адсорбции из растворов получают данные, различающие- ся иногда даже по порядку величин. Это можно объяснить тем, что размеры частиц растворенных веществ, используемых в адсорбционных опытах, изменяются от молекулярных и ионных до коллоидных. С увеличением размеров частиц растворенного вещества возрастает радиус пор, доступных для адсорбции, и поверхность пор с меньшим радиусом окажется неучтенной. Таким образом, различие в измеренных величинах удельной поверхности по адсорбции растворенных веществ наиболее заметно для тонкопористых объектов. [c.72]

    В связи с этим иногда высказывают мнение, что определение удельной поверхности возможно только для непористых веществ. Однако исследования влияния структуры пор адсорбентов на их адсорбционные свойства позволили устранить в значительной мере помехи по определению удельной поверхности, вносимые пористой структурой. [c.122]

    В табл. 1У-2 сопоставлены величины предельной адсорбции /г-хлоранилина йт и йсо на активных антрацитах разной степени активации. Из таблицы видно, что значения ат н Пх практически совпадают. Следовательно, обе величины могут быть использованы как для оценки удельной поверхности адсорбентов, так и для определения предельно-адсорбционного объема. [c.84]

    Другие свойства твердого тела, являющиеся функцией удельной поверхности, также могут быть измерены, но, однако, соответствующие методы не нашли широкого применения. В обзоре Молла [16], включающем сведения, взятые приблизительно из 150 литературных ссылок, были рассмотрены различные способы измерения удельной поверхности, разработанные до 1954 г., для всех типов твердых адсорбентов. Джой [17] в своем обзоре перечислил методы с применением адсорбции азота, которые были развиты к 1953 г. В 1969 г. проходил симпозиум [18] по общим проблемам определения удельных поверхностей, на котором особенное внимание уделялось аспектам адсорбционного метода БЭТ. [c.637]

    Известны различные методы определения удельной поверхности дисперсных тел. Наиболее широкое распространение в научной и производственной практике получили методы низкотемпературной адсорбции азота (БЭТ), газопроницаемости в различных режимах течения газа, электронной микроскопии, ртутной порометрии и кинетический метод (по скорости образования пироуглерода иа углеводородного газа) [1—3]. Рассмотрим кратко главные достоинства и недостатки для каждого из методов, В методе БЭТ главным методическим недостатком является то, что при выводе основного уравнения адсорбции не учитываются энергетическая неоднородность поверхности и взаимодействия молекул внутри адсорбционного слоя существует также некоторая неопределенность в величине посадочной площадки адсорбируемой молекулы [2], В работе [2] рассмотрены и другие ограничения применимости метода БЭТ. В последнее время разработаны экспресс-методы [4], значительно сократившие время измерения, К достоинствам метода относится возможность получения высокой точности самих измерений (но не его интерпретации). [c.117]

    Удельная поверхность 5 всех алмазных порошков определялась методом фильтрации разреженного газа через слой порошка в стационарном режиме. В качестве рабочего газа использовали гелий, имеющий наибольшую длину пробега среди других газов, что позволило провести измерение удельной поверхности более крупных порошков. Результаты определения удельной поверхности адсорбционным способом хорошо согласуются с приведенными выше данными. Это связано с отсутствием в микрокристаллах алмаза внутренней пористости. [c.63]

    Зависимость адсорбции от концентрации сорбата называется изотермой адсорбции (при постоянстве температуры). Эксперимент дает некоторый участок этой изотермы. Априори можно считать, что адсорбция должна увеличиваться и стремиться к пределу при увеличении концентрации сорбата, поэтому для нахождения предельной адсорбции необходимо экстраполировать изотерму к бесконечно большой концентрации. Корректно эту процедуру можно выполнить только при наличии уравнения изотермы адсорбции — аналитического описания зависимости адсорбции от концентрации адсорбирующегося вещества, причем уравнение должно включать в себя предельную величину адсорбции в качестве одного из параметров. Существует ряд подходящих уравнений и отработанных алгоритмов их применения для адсорбционного определения удельной поверхности [39]. Но изучение адсорбции не сводится только к измерению удельной поверхности дисперсных и пористых материалов, а имеет прикладное значение. Адсорбция лежит в основе улавливания и концентрирования редких элементов, очистки газов и жидкостей от нежелательных примесей. Адсорбенты предназначены для поглощения (адсорбции) различных веществ из растворов или газов. Адсорбция также является частью термодинамического цикла холодильных установок. Существует отдельная индустрия по производству как универсальных, так и специализированных адсорбентов. [c.549]


    Известны два основных вида адсорбционных весов (часто называемых вакуумными весами) пружинные и коромысло-вые. Чувствительность каждого вида весов зависит от многих причин, но для пружинных весов она зависит также от общей массы (емкости) весов. Требуемая чувствительность весов для определения удельной поверхности адсорбентов весовым методом зависит от общей площади поверхности образца. Так как плотный монослой азота, адсорбированного при —195° на 1 м поверхности, весит 0,28 мг, то, чувствительность, требуемую для достижения данной точности для данной площади поверхности образца вычислить легко. Типичные значения приведены в табл. 64. [c.368]

    Существующие адсорбционные методы определения удельной поверхности s твердых тел имеют ряд недостатков. Например, определенная методом БЭТ емкость монослоя сильно зависит от температуры. Значительные трудности представляет выбор истинной площади, занимаемой молекулой адсорбата в плотном монослое. Поэтому представляет интерес поиск новых, более надежных методов определения s из адсорбционных данных. [c.299]

    Наиболее широко в адсорбционных исследованиях используется аргон-, по сравнению с Кг и Хе он, по-видимому, более перспективен для определения удельной поверхности. Эти три газа проявляют значительные различия в ряде важных свойств (табл. 25). Потенциалы ионизации этих газов одинаково высоки вследствие большой устойчивости внешних электронных оболочек, поэтому они химически инертны и образуют одноатомные газы с низкой температурой кипения. Зато другие свойства этих инертных газов более сильно зависят от их атомных номеров, и, что особенно важно для адсорбции, самый легкий из них — аргон — имеет наиболее низкую поляризуемость. В результате представляется маловероятным, что другие газы проявляют заметное изменение теплоты адсорбции при переходе от одного твердого тела к другому и имеют резко выраженный локализованный характер адсорбции (который, как мы видели, по-видимому, проявляется в случае адсорбции криптона и ксенона на некоторых металлах). [c.108]

    Однако, если в приведенном выше примере каким-либо независимым методом измерить поверхность образца, то для данных стандартных условий можно найти зависимость между величиной адсорбции и удельной поверхностью и получить очень простой и удобный метод определения удельных поверхностей серийных образцов. Менаду рассмотренными выше крайними случаями располагается большое число систем, в которых соотношение между адсорбционными способностями компонентов может быть самым различным. В таких системах заполнение адсорбционного слоя одним из компонентов достигается только при а —>-1. [c.123]

    Таким образом, при определении параметров пористой структуры адсорбентов адсорбционными методами необходимо учитывать как химию поверхности адсорбента, так и химическую природу применяемого адсорбата. Следует иметь ясное представление о возможных взаимодействиях адсорбата с поверхностью. В качестве адсорбирующего вещества необходимо применять пары веществ, которые наименее чувствительны к изменению химической природы поверхности адсорбента. При определении удельной поверхности указанных сорбентов необходимо особое внимание уделить выбору значения молекулярной площадки в монослое для данной [c.33]

    По экспрессности и точности метод тепловой десорбции превосходит другие хроматографические методы. Это отчетливо видно из данных табл. 2-6, в которой результаты определений удельной поверхности различных пористых тел методами тепловой десорбции, фронтальной и проявительной хроматографии сравниваются с оценкой по данным пзотерм адсорбции, полученным на вакуумной адсорбционной установке [24]. [c.52]

    Примененный нами термохимический метод определения удельной поверхности адсорбентов позволяет распространить абсолютный метод Гаркинса и Джуры и на мезопористые адсорбенты. Однако теперь, кроме полной поверхностной энергии жидкости Е , нужно дополнительно иметь эмпирическую зависимость поверхностной энергии адсорбционного слоя от относительного давления h пара этой жидкости — Е — f h) в ограниченной области h, обычно 0,05 0,35. Для воды на окисных поверхностях, например, Е при комнатной температуре хорошо передается линейной зависимостью Efi = (0,16 -н 0,13 h) Дж/м . [c.142]

    Небольщая максимальная степень насыщения поверхности сажи адсорбционным слоем ПАВ, как видно из табл. 5, свидетельствует об очень малом числе центров на поверхности, способных к взаимодействию с этими соединениями, вследствие чего нельзя вынести определенного суждения об ориентации углеводородных цепей в адсорбционном слое. Кроме того, учитывая значительную шероховатость поверхности и пористость изученных образцов сажи ( уд>5уд. геом), трудно строго оценить степень покрытия их ПАВ. В связи с этим определение удельной площади поверхности сажи по адсорбции ПАВ лишено смысла. [c.32]

    Лри з = 100 м /г (малоактивные силикагели) 0д 300 А, при 800 м /, (высокоактивные силикагели) 0 40 А. Отсюда видно, что для определения удельной поверхности высокоактивных адсорбентов адсорбционными методами следует применять лип1Ь молекулы небольших размеров. [c.514]

    Помимо различных вариантов адсорбционного метода на практике получили распространение такие методы определения удельной поверхности твердых тел, как ртутная порометрия, электронная микроскопия, рентгеновский метод, метод газовой проницаемости в различных режимах течения газа и др. Каждый из перечисленных методов обладает своими достоинствами и недостатками. Сле цует только отметить одну из отличительных особенностей метода газовой проницаемости, имеющую иногда большое значение на практике, — возможность опредё-лять внешнюю геометрическую поверхность дисперсных тел [21]. [c.373]

    Для многих систем уравнение БЭТ оправдывается в области Р/Ро = 0,05-г0,35. Уравнение БЭТ не годится для определения удельной поверхности микропористых (тонкопористых) тел из-за конденсации адсорбата в микропорах. В этом слз ае для описания адсорбционного равновесия в микропорах была развита теория объемного заполнения микропор (ТОЗМ), приводящая к зфавне-нию Дубинина - Радушкевича  [c.646]

    Исследование абсолютных изотерм имело важное значение для выяснения вопроса о рациональном выборе адсорбата для определения удельной поверхности тонкопо-зистых силикагелей. Изучение адсорбции паров метанола 324, 345], азота [346, 347] и воды [347] образцами названного структурного типа (С-337 и 204) показало отчетливое искажение изотермы адсорбции первых двух веществ за счет увеличения адсорбционного потенциала в тонких порах (к < 30 А). Кроме того, часть объема последних в местах сферических частиц оказалась недоступной для молекул метанола и азота [346, 348]. На этом основании был сделан важный вывод о том, что азот и метанол не могут служить для расчета уде.пьной поверхности образцов с размерами пор 1 < 25—30 А. Как установили в [348], от указанных помех свободен метод определения величины удельной поверхности тонкопористых образцов с помощью адсорбции пара воды (малые размеры молекул и малая роль дисперсионных сил при адсорбции). [c.161]

    Еще слишком рано говорить о том, будет ли на основе этого нового метода создан общий метод определения удельной поверхности. Достигнутые успехи позволяют надеяться, что этот метод даст возможность учесть одновременно и влияние неоднородности поверхности и межмолекулярное притяжение в адсорбционном слое. Поэтому с интересом следует ожидать дальнейших результатов. Однако следует иомнить, что все толкования основаны на постулате о протекании лишь мономолекулярной адсорбции в интересующей нас области изотермы. Это может быть вполне обоснованным, когда чистая теплота адсорбции q—L) высока (резкий подъем изотермы, высокие значения с эт ) так, метод применим для области низких относительных давлений. Но ири рассмотрении систем с низкой теплотой адсорбции (постепенный рост адсорбции, изотерма П1 типа) возникают сомнения в правильности этого постулата. А в тех случаях, когда заметная полимолекулярная адсорбция происходит прежде, чем закончится образование плотного монослоя, модель де Бура-Хилла неприменима. [c.282]

    Для интервала давлений 0,01 — 1 мм рт. ст., используемых в методе определения удельной поверхности по адсорбции криптона, уравнение (8.1а) не выполняется, так как длина свободного пробега имеет тот же порядок, что и диаметр шейки адсорбционной ампулы, и удовлетворительного теоретического уравнения для учета термомолекулярного тока в этом интервале давлений пока еще не получено. Розенберг [15] использовал полуэмнири-ческий метод Лианга [20] для вычисления поправки на термомолекулярный ток криптона и пришел эмпирически к общему уравнению [c.361]

    Ю. А. Эльтеков (Институт физической химии АН СССР, Москва). В работе Неймарка и во многих работах Киселева и сотр. (см., например, [1—3]) показано существенное значение химии поверхности при определении параметров адсорбционных систем. Величина удельной поверхности 5 вычисляется через произведение а -и> — емкости монослоя и площади, приходящейся на одну молекулу в плотном мопослое. Совершенно очевидно, что оба множителя зависят от химического строения поверхностных слоев адсорбента. В случае строго локализованной адсорбции параметр со определяется числом адсорбционных центров на поверхности. [c.86]

    Основанные на физической адсорбции и капиллярных явлениях методы определения удельных поверхностей адсорбентов рассмотрены в [5]. По существу все адсорбционные методы нормируются по удельным поверхностям 5бэт, определенным но двухконстантному уравнению БЭТ [6] на основании экспериментальных изотерм низкотемпературной адсорбции азота. Полученные величины вэт считаются правильными. [c.105]

    Адсорбционные методы определения удельных поверхностей твердых тел обычно основываются на возможности определения емкости заполненного монослоя с последующим использованием уравнения 5 = (лаНа, где 5 — величина удельной поверхности, со — молекулярная площадка, а — адсорбция, На — число Авогадро. Сравнивая методы определения удельных поверхностей, основанные на адсорбции газов (наров) и жидких растворов, следует отметить ряд преимуществ и недостатков каждого метода. [c.122]


Библиография для Определение удельной адсорбционной поверхности: [c.211]   
Смотреть страницы где упоминается термин Определение удельной адсорбционной поверхности: [c.378]    [c.378]    [c.145]    [c.448]    [c.31]    [c.223]    [c.224]    [c.324]    [c.325]    [c.318]    [c.382]   
Смотреть главы в:

Технический анализ нефтепродуктов и газа -> Определение удельной адсорбционной поверхности




ПОИСК





Смотрите так же термины и статьи:

Определение поверхности

Поверхность удельная

Поверхность удельная определение

Удельный вес, определение определение



© 2025 chem21.info Реклама на сайте