Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция и ее связь с параметрами системы

    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]


    Контакт воды с металлической поверхностью приводит к коррозии металлов, протекающей по электрохимическому механизму. Величина водонефтяного соотношения, характерного для конкретного месторождения, при котором система нефть — вода становится неустойчивой, может быть использована в качестве параметра для прогнозирования скорости коррозионного разрушения оборудования. Углеводороды практически не вызывают коррозию металлов. Однако неполярная фаза в системе нефть — вода оказывает значительное влияние на коррозионную активность водонефтяной системы в целом, повышая или понижая ее. Повышение защитного действия углеводородной составляющей в эмульсионной системе вода — нефть связано в основном с ингибирующими свойствами ПАВ, входящими в природную нефть. Наиболее активные ПАВ — нафтеновые н алифатические кислоты и асфальтосмолистые вещества. Содержание ПАВ в нефтях различных месторождений колеблется в широких пределах. Молекулы нафтеновых и алифатических кислот состоят из неполярной части — углеводородного радикала и полярной части карбоксильной группы, что обусловливает их способность адсорбироваться на границе раздела фаз. Соли нафтеновых кислог более полярны, чем сами кислоты, и более поверхностно-активны. Величина поверхностного натяжения на границе раздела вода — очищенная фракция нефти (например, вазелиновое масло или очищенный керосин) составляет 50—55 мН/м, в то время как поверхностное натяжение на границе раздела вода — сырая нефть не превышает 20—25 мН/м. Это свидетельствует об адсорбции поверхностно-активных компонентов нефти на границе раздела сырая нефть—вода. В щелочной пластовой воде происходит реакция взаимодействия нафтеновой кислоты с ионом щелочного металла. Образующееся соединение более поверхностно-активно, чем нафтеновые кислоты. [c.122]

    В газовых и жидких средах в МФП в зависимости от прочности связей могут протекать обратимые процессы, сопровождающиеся увеличением (адсорбция и кристаллизация) или уменьшением (десорбция или растворение) массы твердого тела. Глубина и скорость протекания физических процессов зависит от состояния равновесия системы н регулируется параметрами системы (температурой, давлением и др.). Характерной особенностью физических процессов является неизменность химического состава исходных и конечных продуктов в системе в целом. [c.56]


    Адсорбция и ее связь с параметрами системы [c.32]

    Теоретическое исследование системы газ — адсорбент следует начать с термодинамического описания адсорбционной системы. В этом макроскопическом описании не> учитываются непосредственно ни структурные особенности адсорбента и адсорбируемых молекул, ни особенности межмолекулярных взаимодействий между ними. Для установления связи с этими особенностями адсорбционной системы, т. е. для рассмотрения ее на молекулярном уровне, необходимо привлечь молекулярно-статистическое описание системы газ — адсорбент. В более простых случаях — для однородных адсорбентов и малых заполнений поверхности — на основании сведений о межмолекулярных взаимодействиях и о структуре и химической природе адсорбента и адсорбируемых молекул будут проведены количественные расчеты измеряемых хроматографическими, статическими и калориметрическими методами термодинамических характеристик адсорбции. Далее будет описано решение обратных задач, т. е. определение некоторых структурных параметров молекул на основании измеряемых с помощью газовой хроматографии термодинамических характеристик адсорбции при малых (нулевых) заполнениях поверхности (хроматоструктурный анализ, хроматоскопия). Наконец, будут рассмотрены некоторые простые модели межмолекулярных взаимодействий адсорбат—адсорбат, чтобы продвинуться в область более высоких заполнений поверхности и описать фазовые переходы для двухмерного состояния адсорбированного вещества. [c.127]

    О выборе вместо F а U других термодинамических функций для характеристики адсорбционных процессов. Выше было отмечено, что при проведении измерений изотерм, изостер и теплот адсорбции в вакуумных установках с постоянным объемом (подсистемы 116 и Пв) внешнее давление работы не производит. В случае подсистемы Па работа, производимая постоянным внешним давлением р°, учитывается в величине AI7. Давление газа внутри подсистемы 1 во всех случаях изменяется, а объем этой системы остается постоянным. Поэтому за рабочую и тепловую функции [17] для адсорбционной системы мы выбрали соответственно свободную энергию Гельмгольца F и внутреннюю энергию U. В случае физико-химических процессов, осуш,ествляемых при постоянном внешнем (гидростатическом) давлении Р во всей системе и переменном объеме системы, рабочей и тепловой функциями системы являются соответственно свободная энергия Гиббса G = F PV и энтальпия Я = f7 PV. Однако по указанным выше причинам применение функций G ш П для описания адсорбционных опытов нецелесообразно. Также нецелесообразно применение в этих случаях рабочей функции в форме F -j-PV аА [90] и тепловой функции в форме U PV +стЛ, так как в адсорбционных опытах с твердыми телами а, во-первых, изменяется, а, во-вторых, не измеряется. Поэтому применение подобных рабочих и тепловых функций для процессов адсорбции на твердых телах может быть лишь формальным. В рассмотренных выше случаях, когда в процессе адсорбции р и а изменяются, использование этих функций не упрощает записи термодинамических формул. По этим причинам эти функции в этой главе не рассматриваются. В разд. 1 гл. VI рассматривается функция Q = pV - -лА, представляющая сумму произведений обобщенных силовых и геометрических параметров системы газ — адсорбент, поскольку эта функция непосредственно связана с большой статистической суммой для газа, взаимодействующего с поверхностью твердого тела. [c.148]

    Виды адсорбции, ее количественные характера тики и их связь с параметрами системы ...........39 [c.3]

    Условия появления и существования граничных смазочных пленок, а следовательно, и их смазочная эффективность связаны с термодинамическими параметрами системы. Так, температура, до которой сохраняется целостность смазочной пленки, как это было установлено при изучении смазочного действия эфиров органических кислот, галоидорганических соединений, цианидов и нитропроизводных, растворенных в высокоочищенном (белом) масле, на машине трения при низких скоростях скольжения и высоких нагрузках, связана с теплотой адсорбции по уравнению [51]  [c.45]

    Процессы адсорбционного равновесия носят статистический характер, поэтому одним из возможных путей решения задачи теоретического обоснования существующих уравнений изотерм адсорбции является использование вероятностного подхода, причем в качестве критерия правдоподобия описания используется информационная энтропия [80]. Согласно информационному принципу максимальной энтропии [79], достоверная отображающая функция распределения, которая содержит наибольшую информацию о результатах измерения случайных величин, должна обладать максимальной энтропией. По одному из положений теории объемного заполнения адсорбент характеризуется предельным объемом адсорбционного пространства, заполнение которого связано с уменьшением свободной энергии газовой фазы А. Кроме того, любая система адсорбент — адсорбат определяется некоторой энергией Е, характеризующей энергетический механизм взаимодействия молекул в зависимости от свойств системы. Характеристику заполнения объема адсорбционного пространства можно рассматривать как некоторую функцию распределения и ее плотности, где параметром функции распределения будет энергетический симплекс [81]  [c.223]


    Образование на поверхности электрода оксидной пленки, а также адсорбция на ней ионов или органических молекул изменяет толщину поверхностного слоя с1 и его коэффициент преломления га, а следовательно, параметры отраженного света А и 1 з. Анализ этих изменений, который обычно выполняют с помощью ЭВМ по специально разработанным программам, позволяет рассчитать соответствующие изменения й и п в исследуемой системе и связать их с образованием на поверхности электрода адсорбционного или фазового слоя. Современная техника позволяет регистрировать увеличение величины с1, составляющее всего 0,02 нм, т. е. фиксировать адсорбированное вещество, начиная с заполнений поверхности 0— 0,05. Полученные эллипсометрическим методом данные по адсорбции на ртутном электроде анионов С1 , Вг и 1 , а также некоторых органических веществ находятся в хорошем согласии с результатами электрокапиллярных и емкостных измерений. Широкое применение эллипсометрический метод получил при изучении оксидных слоев на различных электродах. [c.182]

    Классическая термодинамика устанавливает условия теплового, механического и химического равновесия макроскопической системы и связи между соответствующими макроскопическими параметрами этой системы, такими как температура, концентрация компонентов, гидростатическое давление и т. д. Преимущество классической термодинамики применительно к любым таким системам, в частности к системам газ — адсорбент, заключается в общности и строгости устанавливаемых ею условий равновесия и соотношений между такими измеряемыми с помощью различных экспериментальных методов термодинамическими свойствами адсорбционной системы, как изотерма адсорбции, теплота адсорбции и теплоемкость. Эти соотношения позволяют рассчитывать неизвестные термодинамические величины на основании известных. [c.127]

    Более сложные системы, в которых, например, молекулы адсорбата многоатомные, а решетка твердого тела уже не кубическая, требуют более трудоемких расчетов. Возможно, они будут связаны с необходимостью введения параметров, значения которых можно определить. Кроме того, необходимо иметь в виду, что результаты всех подобных расчетов (включая рассматриваемую адсорбцию аргона на хлориде калия) сильно зависят [20] от выбора значения Го — равновесного расстояния адсорбированного атома или молекулы от поверхности. Это расстояние трудно определить непосредственно из-за неопределенности в вопросе о том, как расположена по отношению к центрам ионов поверхностного слоя плоскость, представляющая поверхность твердого тела. Однако для систем, встречающихся при изучении физической адсорбции, зависимость потенциальной энергии от расстояния в целом имеет тот же самый вид, что и в случае адсорбции аргона на хлориде калия, представленном на рис. 7, и поэтому применимы все рассуждения, касающиеся природы адсорбционного слоя. [c.25]

    Поскольку для решения подобной задачи в случае адсорбции таких предположений приходится делать больше, то в этом случае целесообразны приближенные приемы решения. При этом имеет смысл ставить задачу не столько расчета самих величин силовых постоянных адсорбированной молекулы, сколько использования этого расчета для анализа спектра адсорбированных молекул. Направление такого анализа подсказывается самой адсорбционной системой, поскольку в каждом конкретном случае можно выделить определенные части молекулы и типы связей, которые могут осуществлять преимущественно специфическое взаимодействие с поверхностью. Этот анализ можно проводить с использованием матрицы потенциальной энергии, в которой изменены силовые параметры, соответствующие тем связям, вероятность участия которых во взаимодействии с данным адсорбентом наиболее велика. [c.46]

    Приведем несколько примеров, которые позволяют понять, что идеализация использует реально существующие свойства макроскопических тел. Замкнутая система — система, связью которой с внешним миром можно пренебречь. Даже понятие тело — макроскопическая система, заключенная в определенный объем, — пренебрегает возможностью испарения частиц с его поверхности и адсорбции на поверхность тела. Существует и такое понятие, как обратимость. Термодинамические процессы необратимы, но если энтропия за счет изменения параметров изменяется незначительно, то процесс можно считать обратимым. Как показывает анализ, для обратимости необходимо, чтобы внешние параметры изменялись бесконечно медленно. [c.242]

    Группу отдельных операций, которую иногда называют процессами испарения и которая включает такие важные и широко применяемые операции, как перегонка, ректификация, конденсация, испарение, увлажнение и абсорбция, можно успешно трактовать с термодинамической точки зрения. Классификация различных процессов но этим рубрикам полезна, но далека от точности и связана с некоторой неопределенностью в терминологии. Однако все эти процессы испарения имеют общее в том отношении, что все они включают обмен веществом между соприкасающимися фазами (обычно между газообразной и жидкой, хотя в адсорбции и сублимации может участвовать и твердая фаза) и что скорость этого обмена в большей или меньшей степени (при испарении, например, меньше, чем при абсорбции) можно регулировать с помощью диффузии. Если происходит переход из жидкой фазы в пар, то процесс часто называют испарением, а обратный процесс — конденсацией. Из кинетической теории известно, что оба процесса происходят одновременно всякий раз, когда жидкость и пар находятся в соприкосновении, и что наблюдаемый эффект является результатом соотношения скоростей двух противоположных процессов. Если скорости этих процессов равны и в результате не происходит перехода вещества, тогда считают, что система находится в равновесии. В этом случае незначительное изменение одного из параметров состояния — давления, температуры или концентрации — будет вызывать продолжение процесса в том или другом направлении, а значительное изменение одного нз этих параметров будет вызывать преобладание одного из этих процессов, благодаря чему общим результатом явится испарение или конденсация. [c.599]

    Уравнения классической термодинамики — уравнения равновесия и фундаментальные уравнения [163] — являются общими, они применимы к любой термодинамической (макроскопической) системе, в частности, к адсорбционной, независимо от ее молекулярной структуры. Такие термодинамические характеристики адсорбции, как константа адсорбционного равновесия, изменения свободной и внутренней энергии, энтропии и теплоемкости, не содержат молекулярных параметров адсорбционной системы в явном виде, однако численные значения термодинамических характеристик адсорбции отражают влияние молекулярных параметров. Явные выражения связи термодинамических характеристик адсорбции с энергией межмолекулярных взаимодействий и со структурными параметрами адсорбента и адсорбированных молекул дает молекулярно-статистическая теория. Эти выражения будут приведены в гл. 5 и 6. Здесь же мы рассмотрим только сами термодинамические характеристики адсорбции, причем только для малых, в основном предельно малых величин адсорбции. [c.65]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Предположим, что обменно-десорбционные процессы на границе полимер — субстрат в присутствии низкомолекулярного компонента подчиняются закономерностям кинетики химической реакции л-го порядка с константой реакции к, а проникновение компонента через слой полимера описывается традиционными феноменологическими соотношениями теории массопереноса. Причем в начальный момент на поверхности полимерного слоя в сэндвичевой системе, контактирующего с агрессивной средой, мгновенно устанавливается некоторая равновесная концентрация низкомолекулярного вещества Со, соответствующая его растворимости в полимере. Продвижение диффузионного фронта в объем к межфазной границе либо вдоль нее происходит в однородном гомогенном материале с коэффициентом диффузии, не зависящим от концентрации низкомолекулярного компонента. Примем, что изменение параметров многослойных систем связано некоторым образом с концентрацией низкомолекулярного вещества пусть изменение а обусловлено сорбцией в объеме полимерных материалов, а Л и — адсорбцией на межфазной границе полимер — субстрат. При насыщении сорбатом системы параметры достигают равновесных значений. Тогда, очевидно, имея аналитическое выражение этих связей и уравнения, описывающие транспорт и накопление низкомолекулярного вещества в объеме адгезива и на его границе с субстратом, можно получить выражения для описания кинетики изменения свойств многослойных систем. [c.273]

    Таким образом молекулярная теория адсорбции, как основа селективности в адсорбционной хроматографии, развивается в зависимости от сложности системы на разных уровнях. В более простых случаях эта теория позволяет количественно выразить характеристики удерживания через молекулярные параметры взаимодействия. В более сложных случаях эта теория носит до некоторой степени феноменологический характер. Ее ценность в этих случаях связана с приближением к молекулярному уровню, с выявлением лежащих в основе селективности межмолекулярных взаимодействий в адсорбционных системах. [c.34]

    С ов1ременная теория физической адсорбции связана с именами Лангмюра, Поляни, Брунгауэра, Эммета, Гибса и др. Лангмюр разработал теорию адсорбции применительно к тазам, в основу которой положены следующие допущения процесс адсорбции заканчивается при образовании мономолекулярного насыщенного слоя адсорбированного вещества адсорбированные молекулы не взаимодействуют друг с другом. Гетерогенная система может находиться как в равновесном состоянии, когда ее состав и термодинамические параметры остаются постоянными во времени, так и в неравновесном. В последнем случае па1ра метры системы самопроизвольно изменяются, (в результате система приходит в состоящие равновесия. Процесс адсорбции всегда сопровождается процессом десорбции. В случае равенства скоростей этих процес- [c.256]

    Высокие значения коэффициентов распределения при извлечении аминами с угловым азотом указывают на высокую прочность сольватов (это хорошо согласуется с данными о том, что энергия водородной связи в системе пиридин — вода близка к соответствующему значению для системы вода — вода [44]), на близость значений параметров Гильдебранда для сольвата и экстрагента, а также на невысокие значения константы диссоциации в фазе органического растворителя. На последнее предположение указывает тот факт, что адсорбция перренат-иона на анионитах из фазы экстракта незначительна. Однако при разбавлении пиридинового экстракта водой резка возрастает значение диэлектрической проницаемости, что приводит к повышению константы диссоциации сольвата, и естественно, к росту коэффициента распределения. [c.252]

    Функциональный оператор адсорбера А 1вх(0> вх(0. G t), 0свх(О, ф(0 0i- p(O. 0с вых (О , очевидно, является нелинейным, поскольку в уравнения (5.3.1) — (5,3.3) входят нелинейные члены произведения входных, выходных и внутренних параметров и нелинейная функция х((5,ф). Произведем линеаризацию системы уравнений (5.3.1) — (5.3.3). В предыдущем разделе была подробно описана процедура линеаризации системы уравнений, описывающих процесс ректификации на отдельной тарелке ректификационной колонны. Метод линеаризации математической модели процесса адсорбции в общих чертах совпадает с аналогичным методом, использованным при линеаризации математической модели процесса ректификации. В связи с этим в настоящем разделе процедура линеаризации системы уравнений (5.3.1) —(5.3.3) будет изложена более сжато, без подробного разъяснения каждо- [c.237]

    Были сделаны попытки связать теплоты адсорбции с параметрами, характеризующими природу металла установлен ряд качественных соотношений в виде графиков зависимости величины АЯ от таких параметров, как номер группы в периодической системе Менделеева, процентное содержание -характера переходных металлов (см., например, работу Бонда [1а]). Корреляция с последним параметром вполне удовлетворителр ная для ряда металлов, за исключением входящих в группу Via периодической системы (рис. 124 и 125), и ее можно использовать при рассмотрении перенапряжения водорода (см. раздел 4). [c.270]

    В случае же нелинейных изотерм адсорбции рассматриваемые задачи неизмеримо усложняются. Этим объясняется и то обстоятельство, что вплоть до последнего времени такие задачи были исследованы лишь для случая одного размывающего эффекта и отдельных типов нелинейных изотерм [24]. Видимов, в дальнейшем для получения аналитических решений надо идти по пути упрощения некоторых уравнений исходной системы с сохранением нелинейных эффектов таким образом, чтобы адекватность математической модели реальному процессу сохранялась. Здесь встают сложные проблемы математического моделирования процессов адсорбции вообще и динамики адсорбции в неподвижном слое в частности, связанные с выбором простых интерполяционных уравнений кинетики адсорбции, нахождения пределов применимости уравнений и связи кинетических констант этих уравнений с параметрами структуры реальных зернистых адсорбентов. [c.60]

    Рассмотренный материал дает возможность поставить и обратную задачу по удерживаемым объемам охарактеризовать проявляющиеся межмолекулярные взаимодействия, причем не только с адсорбентом и с элюентом на поверхности адсорбента, но и в объеме элюента. Особое значение имеет установление неизвестных параметров структуры сложных молекул на основании измерений удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов, см. лекцию 14), т. е. использование жидкостной хроматографии для суждения о структуре молекул дозируемых веществ. Хроматоскопические задачи на основе констант Генри для адсорбции из растворов, определенных методом жидкостной адсорбционной хроматографии, встречают, конечно, значительно большие затруднения, чем при использовании констант Генри в газоадсорбционной хроматографии (см. лекцию 10). Эти затруднения связаны с тем, что молекулярно-статистическая теория адсорбции даже из разбавленных растворов еще не разработана. Однако из приведенных в лекциях 16 и 17 экспериментальных данных видно, что существуют определенные эмпирические связи между структурой разделяемых методом жидкостной хроматографии молекул и характеристиками их удерживания. Здесь необходимо прежде всего накопить надежные экспериментальные данные для молекул разной структуры в определенных системах элюент — адсорбент. В конце лекции 10 было отмечено, что даже качественный хроматоскопический анализ может представлять большой интерес. В случае же жидкостной хроматографии представляется возможность распространить его на большое количество сложных по структуре и поэтому мало изученных молекул. [c.332]

    Изотерма адсорбции. В равновесной адсорбц. системе параметры, определяющие равновесие,-это а/, парциальные давления р (или с,) и т-ра Т. Они связаны т. наз. термич. ур-нием  [c.39]

    В расчетах молекулярно-электростатического взаимодействия частиц (или плоских поверхностей) принято, что расстояние между противолежащими слоями потенциалопределяющих ионов, которое и определяет силу отгалкивания двойных слоев, совпадает с расстоянием между фазовыми границами частиц. Между тем достаточно беглого взгляда на детальную (на молекулярном уровне) картину строения заряженной поверхности, чтобы убедиться в несовпадении плоскости адсорбции ионов с межфазной границей. Адсорбция по-тенциалопределяюших (ПО) ионов является, в сущности, процессом достройки кристаллической решетки адсорбента (ее анионной или катионной подрешетки при адсорбции анионов или катионов соответственно), поэтому плоскость локализации сорбированных ионов смешена относительно межфазной границы в глубь раствора на расстояние (И2 порядка половины периода решетки д, а возможно, и на большее. Незавершенность решетки и присутствие в ней преимущественно ионов одного знака (их электростатическое отталкивание) может быть причиной существенного ослабления связи ионов с поверхностью и их дополнительного смещения в сторону раствора. По причине рыхлости этот слой не может дать полноценного вклада в молекулярное притяжение частиц. В итоге молекулярное притяжение частиц (поверхностей) определяется расстоянием к между их фазовыми границами, а электростатическое отталкивание — расстоянием к-ё между плоскостями адсорбции ионов, поскольку потенциал именно этих плоскостей входит в константу электростатического отталкивания. Разница этих расстояний с1, как уже отмечалось, должна быть порядка периода решетки вещества, служащего дисперсной фазой. Таким образом, в дополнение к энергии специфической адсорбции ионов появляется еще один специфический для каждого вещества параметр — период решетки (или среднее меж-молекулярное расстояние в веществе), определяющий структуру ДЭС и его эффективность как фактора устойчивости дисперсной системы. Период решетки прене- [c.631]

    Решение задачи оптимизации использования молекулярных взаимодействий компонентов смеси путем выбора соответствующей неподвижной фазы (адсорбента или жидкости, молекулярного сита) может быть найдено лишь на основе теории межмолекулярных взаимодействий в газах и жидкостях и между газами и жидкостями и твердым адсорбентом. Эта теория основывается на результатах изучения геометрии и химической природы молекул газа, молекул жидкости и поверхности твердого тела. Она представляет собою молекулярную теорию, поскольку ее задачей в области хроматографии является объяснение связи с молекулярными параметрами и вычисление термодинамических констант адсорбционного или распределительного равновесия (например, констант Генри для нулевых проб), определяющих селективность. Отсюда ясно значение молекулярно-статистических расчетов для развития молекулярных теорий адсорбции или растворения п их приложений к хроматографии, поскольку именно статистическая термодинамика указывает правильную количественную связь констант термодинамического равновесия с нотенциальпыми функциями межмолекуляриого взаимодействия. Однако по мере усложнения адсорбционной системы использование статистической термодинамики для количественных расчетов удерн иваемых объемов встречает затруднения, особенно в случае специфических взаимодействий и неоднородных поверхностей. Вместе с тем увеличение энергии и характеристичности взаимодействия влечет за собой возможность получения новой важной информации о специфическом молекулярном взаимодействии при использовании комплекса спектроскопических методов. Это помогает наполнить даваемые хроматографическими и термодинамическими исследованиями полуэмпи-рические и феноменологические связи между различными параметрами эвристическим содер/канием в смысле возможного приближения к молекулярным основам взаимодействия и селективности. Сюда относится,, в частности, использование регулирования специфхмеских взаимодействий, в частности электростатических взаимодействий динольных и квад-рупольных молекул с поверхностями ионных кристаллов и с поверхностными функциональными группами, использование и регулирование водородной связи и вообще взаимодействий донорно-акценторного типа и процессов комплексообразования. [c.34]

    В большинстве работ, посвященных анализу возможности вычисления изотерм адсорбции отдельных компонентов из их смесей, рассматривается лишь адсорбция бинарных смесей, т. е., по существу, адсорбция растворенного вещества из его индивидуального раствора. Применительно к адсорбции ограни ченно растворимых органически веществ из водных растворов эта задача была проанализирована в гл. 3. Возможность же вычисления изотерм адсорбции отдельных ком понентов из их смеси в водном растворе, т. е. из трехкомпонентной системы, по параметрам, характеризующим адсорбцию этих веществ из их индивидуальных водных растворов, является значительно более сложной задачей. Еще более сложно вычисление изотерм совместной адсорбции смесей органических веществ из растворов по характеристикам адсорбции компонентов смеси из индивидуальных (двухкомпонентн э1х) растворов. Между тем, такого рода задачи все более часто возникают в технологии очистки промышленных сточных вод и водоподготовки, в связи с повышением требовательности к экологической безопасностц работы предприятий промышленности, энергетики, в сельском хозяйстве к использованию и хранению пестицидов и т. п. [c.175]

    Сопоставление полученных методом кривых заряжения изотерм абсорбции водорода на палладии и на его сплавах с металлами группы меди и некоторыми металлами VIII группы [1] показало, что упрочение или ослабление энергии связи Ме—Н в сплаве по сравнению с палладием зависит от величины атомного объема добавляемого компонента. Если параметр решетки вводимого в палладий металла меньше соответствующего значения чистой р-фазы системы Рс1—Н (<4,01. 4), как это имеет место в сплавах Рс1 с Си, N1, Со, Ре, КН и Р1, энергия связи Ме—Н падает, а соответствующие кривые заряжения расположены в более отрицательной области потенциалов по сравнению с кривой заряжения чистого палладия. В то же время сплавление палладия с золотом и серебром (а4,07 и 4,08.4) сопровождается смещением кривых заряжения п более положительную область и соответствующим возрастанием прочности связи Ме—Н. Эти положения подтверждаются также непосредственным определением изостерной дифференциальной теплоты растворения водорода сплавами нескольких систем на основе палладия [2—5]. Однако метод измерений при нескольких температурах достаточно трудоемок кроме того, определение на изотермах точек равной концентрации, когда процесс растворения сопровождается значительной адсорбцией водорода, представляется довольно сложной задачей. [c.141]

    В этой связи важно, во-первых, экспериментальное установление обратимого и необратимого снижения адгезии в сэндвичевых системах выше и ниже температуры стеклования полимеров и вывод авторов [398, 399] о динамическом абсорбцион-но-десорбционном характере адгезии указанных полимеров выше Гг,. Это, по-видимому, общая особенность всех полимерных элементов многослойных систем, связанная с их физическим состоянием и подвижностью звеньев макромолекул выше и ниже Гс [400—402]. Во-вторых, экспериментальные исследования совместной адсорбции дибутилфталата и воды на силикагеле и летучих ингибиторов коррозии (бензоаты амина) и воды на железе. Авторы работ [403, 404] приходят к выводу о частичном снижении заполнения поверхности субстрата водой в присутствии низкомолекулярных органических соединений, подавлении поли-молекулярной конденсации и образованию на поверхности субстрата микрогетерогенной системы, состоящей из островков воды и органического вещества. В системах с полимерным адгезивом процессы обмена протекают, вероятно, более сложным образом, однако эти различия имеют скорее количественный, чем качественный характер. Об этом косвенно свидетельствует сходство форм изотерм конкурентной адсорбции и изотерм изменения Лоо, оо. Количественные различия проявляются в степени сдвига участков интенсивного изменения параметров в область средних и высоких относительных влажностей. Отметим, что в [398] изменение прочности адгезионной связи при р/рз) р/рв)кр связывалось с адсорбционным замещением макромолекул молекулами воды на поверхности металла при заполнении второго и следующих адсорбционных слоев. В свете этих работ становятся более понятными результаты исследований по кинетике коррозии. Так, вывод о том, что скорость коррозии металла под покрытием в начальный период эксплуатации является функцией прочности связи элементов сэндвичевой системы означает, что увеличение адгезии уменьшает концентрацию коррозионноактивных центров на поверхности металла, доступных агрессивным компонентам среды, и, по-видимому, концентрацию молекул агрессивного компонента около этих центров. Об этом же свидетельствует предварительное модифицирование границы раздела или полимерного слоя, которое приводит к общему увеличению А и значительному возрастанию промежутков времени, [c.270]


Смотреть страницы где упоминается термин Адсорбция и ее связь с параметрами системы: [c.225]    [c.133]    [c.283]    [c.60]    [c.21]    [c.58]    [c.60]    [c.88]    [c.2]    [c.132]    [c.10]    [c.28]    [c.86]   
Смотреть главы в:

Курс коллоидной химии -> Адсорбция и ее связь с параметрами системы




ПОИСК





Смотрите так же термины и статьи:

Системы параметры

связям системам



© 2025 chem21.info Реклама на сайте