Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы гидрирования и дегидрирования Платина, Палладий, Никель

    Катализаторы гидрирования [13], такие, как платина, палладий, никель и т. д. В данном случае реакция обратна гидрированию двойной связи (т. 3, реакции 15-10 и 15-12), и механизм ее, по-видимому, также обратен , хотя данных об этом немного [14]. Субстрат нагревают с катализатором до температуры примерно 300—350 °С. Реакции часто удается провести в более мягких условиях, если для связывания выделяющегося водорода использовать такие акцепторы водорода, как малеиновая кислота, циклогексен или бензол. Акцептор восстанавливается до насыщенного соединения. Сообщается, что дегидрирование 1-метилциклогексена-1- С в присутствии А Оз приводит к толуолу, в котором метка частично распределена по кольцу [15]. [c.265]


    Под атмосферным давлением олефины можно гидрировать при температурах около 00—550° С. За этим пределом преобладает дегидрирование. Применение давления и катализатора дает возможность провести процесс гидрирования при комнатной температуре и даже ниже те же условия требуются для доведения до минимума дегидрирования при более высоких температурах. Гидрирование особенно усиливается при повышении давления. Довольно широкий ряд металлов относится к активным катализаторам гидрирования. Наиболее интересны никель, палладий, платина, кобальт, железо, активированная никелем медь. Первые три из них, будучи приготовлены специальным образом, активны при комнатной температуре и атмосферном давлении. Металлические катализаторы легко отравляются серо -мышьяксодержащими [c.89]

    На поверхности катализатора бензол может адсорбироваться либо всей плоскостью, либо одним из ребер. По А. А. Баландину это будут соответственно секстетная и дублетная модели. В случае плоскостной хемосорбции (секстетная модель) размеры молекулы бензола и расстояния между атомами металла должны соответствовать друг другу. Мультиплетная теория А. А. Баландина по параметрам решеток металлов постулирует, что катализаторами гидрирования и дегидрирования могут быть только металлы никель, кобальт, медь, рутений, иридий, палладий, платина, родий, осмий,. рений. Это подтверждено экспериментально, за исключением меди, на которой гидрирование бензола часто не наблюдалось. Однако считают что это исключение кажущееся и незначительная активность меди объясняется энергетическими факторами. [c.131]

    В качестве катализаторов щироко используются металлы, такие как никель, платина, палладий, медь и др. Эти металлы используют в реакциях гидрирования и дегидрирования, платину применяют также в реакциях каталитического окисления, например, при окислении аммиака до оксида азота (II). Очень хорошими катализаторами являются кристаллические алюмосиликаты — цеолиты, АЬОз, АЬ(804)з. Эти вещества образуют кристаллогидратные соединения с водой, поэтому их используют как катализаторы в реакциях гидратации и дегидратации. [c.46]

    Были испытаны многие катализаторы, в том числе платина, палладий и никель. Адкинс и сотр. [88—93] подробно исследовали дегидрирование полициклических и гетероциклических соединений над тремя катализаторами с бензолом в качестве акцептора водорода. Для реакций необходимы высокие температуры (обычно выше 300°), поэтому они проводятся в автоклавах, рассчитанных на высокие давления. Реакция в присутствии никелевых катализаторов чрезвычайно чувствительны к примесям в бензоле, причем эффект оказывается весьма неожиданным. Бензол, не содержащий серы, совершенно не пригоден в качестве акцептора. При добавлении тиофена или, еще лучше, дифенилсульфида происходит дегидрирование. Тетраметилолово и четыреххлористый углерод также способствуют дегидрированию. Сернистые соединения не облегчают дегидрирование над платиной или палладием. В то же время не наблюдается отравления катализатора, как при каталитическом гидрировании.. [c.353]


    Один из лучших методов ароматизации — каталитическое дегидрирование, которое осуществляют, нагревая гидроароматическое соединение с катализатором типа платины, палладия или никеля. Эти металлы нам уже знакомы как катализаторы гидрирования поскольку они снижают энергетический барьер между гидрированными и дегидрированными соединениями, то они ускоряют реакцию в обоих направлениях (разд. 6.3). Положение равновесия определяется другими факторами гидрированию благоприятствует наличие избытка водорода под давлением, а дегидрированию — удаление водорода током инертного газа. [c.990]

    Такие металлы, как никель, платина, палладий, медь и железо, широко применяются в качестве катализаторов, вызывающих многие химические реакции, например, гидрирование, дегидрирование, окисление и дегидратирование при умеренных температурах. В отсутствии катализатора эти реакции идут только как высокотемпературные гомогенные газовые реакции. Газовые реакции, как правило, являются процессами атомного типа, а не ионного. Поэтому представляет интерес рассмотреть вкратце, как изменяется их механизм, когда эти же реакции идут на поверхности. [c.234]

    Однако в то время как реакция крекинга [схема (276, б)] протекает необратимо, дегидрирование (276, а) представляет собой обратимую реакцию, которая находится в равновесии с реакцией гидрирования (см. гл. 4, часть IV). В связи с этим дегидрирование можно ускорить теми же катализаторами, что и гидрирование, т. е. никелем, платиной, палладием (см. стр. 269). Гидрирование преобладает при низких температурах, дегидрирование же доминирует при более высоких температурах. Речь идет при этом о реакции на поверхности катализатора, механизм которой выяснен, как и для гидрирования, не полностью. [c.358]

    В то время, как реакция крекинга (Г.6.556) необратима, дегидрирование по уравнению (Г.6.55а) является обратимым процессом. Поэтому дегидрирование можно ускорить теми же катализаторами, что и гидрирование, — никелем, платиной, палладием (см. разд. Г,4.5), а с заметно меньшей эффективностью также оксидами алюминия и хрома. Гидрирование преобладает при низких температурах, дегидрирование — при высоких (см. также разд. В,2). Здесь имеют место реакции на поверхности катализатора, механизм которых до конца не выяснен. [c.47]

    Наиболее подходящими металлическими катализаторами дегидрирования являются платина, палладий и медь. Никель, являющийся эффективным катализатором гидрирования, для дегидрирования используется меньше, так как часто оказывает деструктивное влияние на углеродный скелет молекулы Однако простые углеводороды, например циклогексан, могут быть легко дегидрированы с его помощью [c.171]

    Рентгеноструктурными методами исследования установлено, что в кристаллах платины, палладия, иридия, никеля, кобальта, родия, рутения, осмия п рения атомы металла расположены друг от друга па расстоянии от 2,77 до 2,49 ангстрема. Этот промежуток соответствует расстоянию между атомами углерода и водорода в молекулах различных органических соединений. Все эти металлы являются катализаторами реакций дегидрирования и гидрирования углеводородов. [c.201]

    В зависимости от степени заполнения катализатором поверхности адсорбента. Н. И. Кобозев с сотрудниками изучил более 50 случаев катализа, среди них реакции окисления, восстановления, гидрирования, дегидрирования, полимеризации, синтеза аммиака и др. Как катализаторы были исследованы платина, железо, палладий, никель и др. В качестве носителей активных [c.274]

    Мэкстед [43] показал, что в переходных металлах — наиболее активных катализаторах гидрирования и дегидрирования — парамагнитная восприимчивость изменяется симбатно с каталитической активностью. В большинстве случаев в первом, втором и третьем больших периодах активность растет до максимума, приходящегося соответственно на никель, палладий и платину. По данным Мэкстеда, по крайней мере во втором и третьем периодах, в которых меньше осложнений, связанных с ферромагнетизмом, парамагнитная восприимчивость также возрастает до максимумов, соответствующих палладию и платине (табл. 6). Поскольку парамагнитная восприимчивость частично. [c.28]

    Гидрирование — присоединение водорода к непредельным углеводородам — протекает в соответствии с термодинамическими расчетами при низких и средних температурах. При высоких температурах протекает обратная реакция — дегидрирование парафиновых углеводородов в олефины и диолефины. Высокое давление благоприятствует реакции гидрирования. Однако на некоторых катализаторах гидрирование происходит нацело и при атмосферном давлении. Наиболее активными катализаторами для гидрирования олефиновых углеводородов являются металлы — платина, никель, кобальт, палладий и др. Подробное изучение процессов гидрирования и их кинетических закономерностей служило объектом многих исследований С. В. Лебедева и его сотрудников [50], которые установили основные закономерности этого процесса. [c.44]


    Другое объяснение каталитических реакций заключается в образовании некоторых промежуточных, малоустойчивых и чрезвычайно реакционноспособных соединений катализатора с одним из взаимодействующих веществ. В применении к реакции гидрирования этими промежуточными веществами являются образующиеся на поверхности катализатора продукты присоединения водорода к металлу, т. е. так называемые гидриды. Примерами таких гидридов могут служить давно известный водородистый палладий, а также водородистые платина и никель. Все эти гидриды крайне малоустойчивы благодаря этому они чрезвычайно легко отдают свой водород другим соединениям, т. е. энергично гидрируют их, являясь, таким образом, передатчиками водорода гидрируемому веществу. С другой стороны, способность соединяться с водородом может проявляться у некоторых металлов настолько сильно, что они оказываются способными отнимать водород даже от некоторых сложных веществ, т. е. действовать на них дегидрирующим образом. Так, с точки зрения теории промежуточных соодинений, объясняются явления гидрирования и дегидрирования в присутствии мелко раздробленных металлических катализаторов. [c.503]

    Активность гетерогенных катализаторов зависит от физического или химического сродства катализатора к одному или нескольким реагентам. Так, платина, никель, медь и палладий, катализирующие реакции гидрирования и дегидрирования, легко адсорбируют водород, образуя с ним поверхностные соединения типа Ме — Н, а палладий даже способен растворять его. Катали- [c.349]

    В органическом синтезе металлы (кроме Ад) применяют в процессах гидрирования для этих же процессов распространены и сложные катализаторы. Для реакций дегидрирования используются главным образом оксиды (МдО, 2пО, РегОз, СггОз), для процессов окисления — некоторые оксиды (СиО, УгОб), а также вольфраматы, молибдаты и металлическое серебро. В реакциях гидрирования наиболее активны платина н палладий, меньше никель еще более мягким действием обладают Ре, Со и Си. При окислении и дегидрировании Р1, Р(1 и N1 способствуют глубокому превращению реагентов это же относится и к хроматам. Мягкими катализаторами неполного окисления являются СиО, УгОв, вольфраматы, молибдаты. Оксиды и сульфиды молибдена и вольфрама нечувствительны к отравлению сернистыми соединениями. [c.441]

    Следует заметить, что некоторые катализаторы не обладают специфичностью в такой степени. Так, металлические никель, палладий и платина катализируют различные реакции присоединения или отнятия водорода (гидрирования и дегидрирования). [c.164]

    При термическом риформинге реакции сходны с реакциями, проходящими при крекинге газойлей размеры молекул уменьшаются, в то же время получаются олефины и некоторое количество ароматических углеводородов. Каталитический риформинг проводится в присутствии водорода над катализаторами гидрирования — дегидрирования, которые могут быть нанесены на окись алюминия или на алюмосиликат. В зависимости от типа катализатора имеет место определенный ряд реакций, вызывающих структурные изменения в сырье [132—137]. Главными реакциями над никелем и кобальтом являются реакции изомеризации и гидрокрекинга, над М0О7 СгаОз — дегидрирования и дегидроциклизации в то же время платина, палладий, иридий и родий способствуют реакциям дегидрирования, изомеризации, дегидроциклизации и гидрокрекинга. [c.344]

    Дегидрирующую (гидрирующую) функцию в катализаторе обычно выполняют металлы УП1 группы Периодической системы элементов Д. И. Менделеева (платина, палладий, никель). Наибольшими дегидрирующими свойствами обладает платиновый компонент. Его функцией является ускорение реакций дегидрирования и гидрирования, что способствует образованию ароматических углеводородов, непрерывному гидрированию и частичному удалению промежуточных продуктов реакций, ведущих к коксооб-разованию. Содержание платины в катализаторе обычно составляет 0,3—0,6%. При меньшем содержании платины уменьшается устойчивость катализатора против ядов, при большем обнаруживается тенденция к усилению реакций деметилирования, а также реакций, ведущих к раскрытию кольца нафтеновых углеводородов. Другим фактором, лимитирующим содержание платины в катализаторе, является его дороговизна. [c.139]

    Для ингибирования коррозии нефтепромыслового оборудования в нейтральных или кислых водных растворах и солевых рассолах, используемых для повышения нефтеотдачи скважин, применяют 0,001... 1 %, оптимально 0,1 %, 3, 4, 5, 6-тетрагидропиримидина (А-2ТГП). Его получают в две стадии восстановлением 2,3,4,5-тетрагидропиримидина (А-1ТГП) до гексагидро пиримидина с помощью смесей натрий /этанол или магний/ метанол, натрийборогидрида, литийалюминийгидрида или бисульфита натрия, используя в качестве катализатора платину, палладий, кобальт или никель. Затем гексагидропиримидин дегидрируют, катализатором в этом случае служат также платина, палладий, никель, кобальт или хромит меди. Синтез проводят при температуре 180... 190 °С. Процессы гидрирования/дегидрирования можно совместить, не выделяя гексагидропиримидин, при этом платина, палладий, никель, кобальт и хромит меди катализируют обе реакции, в результате которых водород, выделяющийся на первой стадии процесса, расходуется на второй стадии. [c.244]

    Из металлов наиболее характерными каталитическими свой-стнами обладают элементы VUl группы периодической системы элементов Д. И. Менделеева. Для ряда процессов катализаторами являются железо (синтез аммиака) кобальт, никель, иридий, платина, палладий (гидрирование и для последних — окисление двуокиси серы). Кроме того, металлы VUl группы являются катализаторами и других процессов разложени.я перекиси водорода, получения гремучего газа, окислеиия аммиака, метанола, метана, окиси углерода, дегидрирования спиртов и т. д. Каталитической активностью обладают и соседние (в периодической системе) элементы медь, серебро, отчасти золото, возможно цинк и кадмий. [c.363]

    Для катализаторов характерна специфичность действия, т. е. способность проявлять себя только в определенных реакциях. Применяя разные катализаторы, можно получать различные продукты из одних и тех же веществ. Так, в присутствии А Оз, который хорошо поглощает воду, реакция термического распада этанола идет по схеме С2Н50Н- С2Н4 + Н20, в присутствии никеля при 300— 400 С — по схеме СгНвОН СНзСНО- -Но. Никель, платина, палладий хорошо поглощают (сорбируют) водород и активизируют его тем, что на их поверхности он расщепляется на атомы. Поэтому N1, Р1, Рс1.сильно ускоряют процессы гидрирования и дегидрирования. И в других случаях замечено, что каталитическая активность в гете- [c.63]

    Рентгеноструктурными методами исследования установле--—. но, что в кристалликах платины, палладия, иридия, рутения, меди, кобальта и никеля атомы металла расположены друг от друга на расстоянии от 2,77 до 2,49 стомиллионной доли сантиметра (т. е. от 2,71 до 2,49 ангстрема). Этот промежуток соответствует расстоянию между атомами углерода и водорода в молекулах различных органических соединений. Все эти металлы являются катализаторами для реакций дегидрирования и гидрирования углеводородов. Значит, геометрическое соответствие тоже может помочь исследователям подобрать катализаторы для многих реакций, относящихся к органической химии. [c.17]

    Для сульфидных катализаторов на основе молибдена и вольфрама наиболеё характерно ускорение процессов, идущих с присоединением или отщеплением водорода. При этом сульфиды молибдена в реакциях гидрирования используются наряду или даже в большей степени, чем окислы, а сульфиды вольфрама несравненно больше окислов. В реакциях дегидрирования сульфиды молибдена в качестве исходных контактов применяются реже окисных катализаторов, хотя во многих процессах по переработке технического сырья окисные молибденовые катализаторы частично переходят в сульфидные за счет присутствия в исходных продуктах серусодержащих веществ. Сульфиды вольфрама в процессах дегидрирования употребляются наряду с окислами. В общем молибден- и вольфрамсульфидные катализаторы, так же как и окисные, используются в каталитической практике гидрирования — дегидрирования весьма широко, хотя и уступают таким типичным катализаторам указанных процессов, как никель, платина и палладий. [c.578]

    Обнаруженные на ранних стадиях исследования примеры отравления относятся главным образом к активности платины в реакции окисления п сходных реакциях (превращение двуокиси серы в трехокись, реакция образования воды из гремучего газа, разложение перекиси водорода), но основное применение эта группа металлов находит, пожалуй, в реакциях гидрирования. Действительно, большинство из современных работ по отравлению было проведено в связи с эти.м типом реакци11. Металлы вертикальной группы никель, палладий и платина, особенно важны благодаря их высокой общей активности и вследствие широкого применения их как для гидрирования, так и для дегидрирования. Меньшая активность кобальта и особенно меди сообщает этим элементам особые свойства, которые иногда полезны. Так, наиболее мягкое действие меди как катализатора гидрирования часто допускает выделение промежуточных продуктов, а применение меди вместо никеля для дегидрирования при высоких температурах обычно приводит к меньшему образованию продуктов разложения далее, кобальт (подобно никелю и, в меньшей степени, железу) является эффективным катализатором в специальном случае синтеза жидких углеводородов путем конденсационной гидрогенизации окиси углерода по методу Фишера—Тропша. Основное использование железо находит, однако, в синтезе аммиака, представляющем реакцию, близкую к гидрированию. Все эти процессы очень чувствительны к отравлению. Серебро и золото имеют незначительную активность для обычного гидрирования и поэтому в табл. 1 поставлены в скобки однако они использовались как эффективные катализаторы в особом случае восстановления нитробензола водородом до анилина [1], при окислительном дегидрировании метилового спирта до формальдегида. Вместо серебра можно использовать медь. [c.101]

    Если хотят провести дегидрогенизацию таким образом, чтобы продукты реакции были построены иа углеродном скелете исходного вещества, необходимо проводить реакцию при такой температуре, при которой связь — С — С — еще относительно устойчива. Но температура в то же времядолжпабытьдостаточновысокой,чтобы обеспечить отщепление атомарного водорода. Обычно эти противоречивые требования можно примирить, если применять селективные катализаторы, способствующие более быстрому разрыву связи С — Н. Для этой цели прежде использовали серу или металлический селен. Оба этих вещества сами по себе не являются катализаторами в классическом смысле этого слова, поскольку принимают участие в реакции. Соединяясь относительно легко с водородом, они тем самым химически связывают его и выводят из реакционной среды. Благодаря этому равновесие системы сдвигается в желаемом направлении. Дегидрирование с помощью серы или селена требует температуры свяше 300°, Настоящими катализаторами дегидрирования, которые активируют процесс при температурах свыше 200°, являются те же самые металлы, которые при более низких температурах проявляют себя как отличные катализаторы гидрирования, К ним, например, относятся медь, серебро, никель, кобальт, хром, палладий и платина. Эти катализаторы проявляют свою активность том сильнее, чем лучше они измельчены. В измельченном виде они обладают огромной поверхностью, на которой водород адсорбируется, растворяется и переходит из молекулярного состояния в атомарное, в котором он обладает большей реакционной способностью. Гидрирование двойной связи и дегидрирование ненасыщенных соединений за счет присоединения или отщепления атомарного водорода происходит па поверхности катализатора. [c.21]

    Раньше среди твердых катализаторов преобладали металлы, затем их во многих процессах заменили окислами металлов, в дальнейшем в ряде производств начали применять сернистые, бористые и хлористые соединения, а также кислоты (серную, фосфорную, плавиковую и другие), соли (ванадаты, хромиты, манганиты и др.) и некоторые органические соединения. Среди катализаторов имеются такие, которые применимы для многих химических процессов. В этом отношении представляют интерес элементы VIII группы периодической системы Менделеева. Как железо, никель и кобальт, так и платина и палладий являются катализаторами для многих разнообразных химических процессов — окисления, гидрирования, дегидрирования, некоторых синтезов и др. Для многих [c.72]

    Активность гетерогенных катализаторов зависит от физического или химического сродства катализатора к одному или нескольким реагентам. Так, платина, никель, медь и палладий, катализирующие реакции гидрирования и дегидрирования, легко адсорбируют водород, образуя с ним поверхностные соединения типа Ме—Н, а палладий даже способен растворять его. Катализаторы реакций гидратации и дегидратации А12О3 и А12(504)з образуют гидратные соединения с водой. На поверхности платины, используемой в качестве окислительного ката- [c.270]

    Метод дегидрирования особенно удобен при определении строения природных, сильно гидрированных циклических углеводородов путем превращения их в ароматические углеводороды (которые гораздо легче идентифицировать), но в ряде случаев он может быть и препаративным (детальный обзор [1], более краткий [2]). Наиболее часто в качестве дегидрирующих агентов применяются сера, селен, или такие металлы, как платина или палладий, а также и другие металлы, такие, как никель или родий, и такие соединения, как хлоранил при действии света или без него [3, 4], 2,3-дихлор-5,6-дициан-1,4-бензохинон [51 и тритилперхлорат [6]. Последний, по-видимому, наиболее эффективен для превращения перинафтанонов в перинафтеноны и хроманонов в хромоны [71. В случае серы работают при сравнительно низких температурах (230—250 °С) селен требует более высокой температуры (300—330 °С). При использовании каталитических методов (Р1 или Рб) соединение в паровой фазе можно пропускать над катализатором, нагретым при 300— 350 °С, однако удобнее работать в жидкой фазе. Как правило, хорощие результаты при дегидрировании дает нагревание с одной десятой частью 10%-ного палладированного угля при 310—320 °С. Иногда при дегидрогенизации серой или селеном в качестве растворителей используют нафталин или хиполип. Пропускание через реакционную смесь углекислого газа, а также энергичное кипячение облегчают удаление водорода можно также использовать акцепторы водорода, например бензол [81 или олеиновую кислоту [9]. [c.62]

    Надежным дегидрирующим агентом в таких случаях является палладиевая чернь [234]. Хорошими катализаторами являются также палладий на угле [235], платина 236] и скелетный никель [237, 238] (применяется без растворителя или в растворе гидрированных нафталинов). Тщательное изучение дегидрирования 3,4-дигидропапаверина показало, что наилучшие результаты получаются при проведении реакции в кипящем кариофиллене над палладием, нанесенным на уголь [229]. В качестве растворителей использовались также тетралин, ди ги дрофе л лан дрен [239], ксилол [240], водный раствор малеинового ангидрида [241] и диизопропилбензол 1242]. [c.299]

    Сопряженное с дегидрированием ментана и других терпенов гидрирование коричной кислоты, а также ненасыщенных кетонов происходит на палладированном угле [23] более селективно, чем с молекулярным водородом. На скелетном никеле за счет дегидрирования изопропанола прогидрированы с высокими выходами фенол в циклогексанол [24, с. 123] и дифенилметан в фенилциклогексилметан [25]. При шестидесятикратном избытке изопропанола как донора водорода гидрирование бензола на палладированном угле при 333 К протекает с образованием циклогексена, а с катализаторами палладий на оксиде алюминия и платина на угле получается циклогексан [26, с. 158]. [c.103]

    Гидрирование и дегидрирование. Обработка ацетиленов газообразным водородом в присутствии тонкоизмельченного палладия в качестве катализатора приводит к присоединению водорода к тройной связи с образованием алкена. При последующей реакции этот алкен может быть превращен в насыщенный углеводород. Присоединение водорода к ненасыщенным связям называется -гидрированием. Палладий можно заменить тонкоизмельченным никелем (никель Ренея) или платиной, однако в присутствии этих катализаторов реакцию труднее остановить на стадии образования алкена. Если необходимо получить именно алкен, то палладий иногда частично отравляют свинцом. При изображении органических реакщгй катализаторы и условия реакции часто пишут над стрелкой и под ней  [c.38]


Смотреть страницы где упоминается термин Катализаторы гидрирования и дегидрирования Платина, Палладий, Никель : [c.366]    [c.631]    [c.40]   
Основные начала органической химии Том 2 1957 (1957) -- [ c.45 , c.46 , c.53 , c.54 , c.57 , c.58 , c.62 , c.68 , c.75 , c.77 , c.105 , c.106 , c.130 , c.222 , c.223 , c.225 , c.288 , c.408 , c.466 , c.481 , c.497 , c.504 , c.521 , c.523 , c.587 , c.598 , c.621 , c.662 , c.678 , c.683 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрирование и дегидрирование

Дегидрирование катализаторы

Никель катализатор

Никель(П) и платина(П)

Палладий

Палладий палладий



© 2024 chem21.info Реклама на сайте