Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система химических реакторов

    Слово анализ в заглавии книги характеризует наш метод. Это значит, что мы хотим разделить рассматриваемый предмет на составные части и исследовать взаимоотношения этих частей. Вслед за анализом возникают многочисленные задачи синтеза, служащие для расчета химических реакторов. Основная же наша цель — понять структуру предмета. Поскольку мы стремимся изучить поведение химических реакторов (а они создаются для проведения химических реакций), нам следует начать с установления общих принципов описания химических реакций. Здесь, на границе нашей области, лежит соседняя область чистой химической кинетики. Предметом химической кинетики является исследование механизма химических реакций на молекулярном уровне. Для наших целей достаточно взять только результаты кинетических исследований. Наш подход к собственно химической реакции будет чисто феноменологическим. При таком подходе основная роль отводится стехиометрии и термостатике, так как все возможные изменения состояния системы обусловлены ограничениями, налагаемыми стехиометрией и термодина- [c.7]


    Стационарными называются такие режимы динамической системы, при которых ее состояние либо не изменяется во времени, либо периодически повторяется. Химические реакторы могут находиться в стационарных режимах как первого, так и второго типа. [c.61]

    Г-1. Система химического реактора описывается уравнениями  [c.248]

    Система химических реакторов [c.330]

    Экономическая оценка работы системы химический реактор— ректификация в производстве хлоропрена. В технологических схемах химических производств для разделения реакционных газов наряду с системой абсорбция—десорбция используются системы, состоящие из ректификационных установок. Подобная система, например, применяется для разделения газов в производстве хлоропрена, включающего два типовых узла — отделение каталитического гидрохлорирования МВА и отделение ректификации реакционных газовых смесей (рис. 22). [c.104]

Таблица 13. Оценка эффективности совместной работы системы химический реактор-ректификация в производстве хлоропрена Таблица 13. <a href="/info/24282">Оценка эффективности</a> <a href="/info/1722921">совместной работы системы</a> <a href="/info/24787">химический реактор</a>-ректификация в производстве хлоропрена
    Применение ячеистой модели к химическим процессам сводится к формальной замене реального проточного реактора системой ячеек-реакторов, эквивалентных каскаду из N последовательно соединенных реакторов полного смешения. [c.81]

    Несомненно, большинство систем характеризуется кривой 1 . Химические реакторы с несбалансированным приходом и расходом тепла, как отмечалось в главе VI, составляют в основном группу, соответствующую кривой 2. Однако при введении в систему автоматических регуляторов она перестает быть непременно монотонной. В зависимости от свойств системы можно получить переходные характеристики различных типов (рис. УП1-3). [c.99]

    Однако в химическом реакторе, так же как и в любой реальной системе, неизбежно происходят возмущения стационарного режима в фазовом пространстве они изображаются отклонениями изображающей точки от положения равновесия. [c.24]

    Применение метода исследования двумерных моделей химических реакторов, о которых будет рассказано ниже (при рассмотрении протекания реакции первого порядка в реакторе непрерывного действия), позволяет выяснить характер разбиения пространства пара.метров исследуемой системы на области, различающиеся числом и устойчивостью положений равновесия. Границы этих областей определяются условиями а = О и Д = 0. [c.78]


    Пусть поведение химического реактора описывается системой дифференциальных уравнений (11,68), т е. [c.168]

    Емкостные реакционные аппараты применяют для процессов, где основой является жидкая фаза (системы жидкость — жидкость , жидкость — газ , жидкость — твердое тело ). Они, как правило, имеют перемешивающее устройство. Емкостные аппараты с мешалками используют не только как химические реакторы, но и для различных физико-химических процессов — получения эмульсий, растворения, смешения жидких компонентов и др. [c.223]

    Диалоговые системы. Сложность математического описания как на уровне отдельных каталитических аппаратов, так и схемы в целом диктует необходимость разработки диалоговых систем анализа и синтеза химических реакторов и агрегатов, способных служить своеобразным мостиком между прикладным математическим обеспечением и потребностями практики проектных и исследовательских расчетов. Основная практическая цель разработки диалоговых систем — это обеспечение широкого доступа к современным методам расчета неспециалистам в области вычислительной техники. [c.256]

    Понятие о моделях реакторов. Химический реактор является сложной системой, характеризующейся чисто физическими, физикохимическими и конструктивными параметрами. Под моделью реактора понимается некоторый гомоморфный объект, более простой во всех отношениях, кроме тех признаков и параметров, влияние которых необходимо изучить и определить. Естественно, что идеализированные условия не должны противоречить основным законам химии и физики. Исследуя свойства модели, устанавливают свойства реактора. Полное совпадение всех признаков — тождество реактора с самим собой. [c.460]

    Работа химического реактора, в особенности многофазного, определяется взаимосвязью физических и химических процессов, протекающих в системе. Эта взаимосвязь определяет распределение полей концентраций и температуры в реакторе. Изменение этих полей и воздействие подобного изменения на работу реактора составляет сущность влияния физических процессов на процессы химические. [c.21]

    Теория растворов и термодинамические закономерности распределения вещества между сосуществующими фазами достаточно изучены и неоднократно рассматривались в специальной литературе. Поэтому имеет смысл рассмотреть в зтой главе лишь некоторые вопросы, которые имеют наибольшее значение для теории и практики расчета химических реакторов, и некоторые особенности фазового равновесия в системах с химической реакцией. [c.81]

    В этом разделе рассмотрим вопрос об устойчивости стационарных режимов реакторов идеального смешения — простейшей из систем, исследуемых в теории химических реакторов. Б режиме идеального смешения (см. раздел УП.З) значения всех переменных одинаковы по всему объему реактора. В соответствии с этим стационарный режим реакторов данного типа описывается алгебраическими, а нестационарный — обыкновенными дифференциальными уравнениями. Такие системы принято называть системами с сосредоточенными пара- [c.324]

    Для осуществления химической реакции (3.8) предусмотрены три параллельно работающих химических реактора (элементы 3, 4 к 5), имеющие одинаковую производительность. Критическим для ХТС считается состояние, при котором система производит менее 60% от максимально возможного (при исправной работе всех трех реакторов) выпуска продукта Е. В данной ХТС полный отказ (полное прекращение выпуска продукта Е) наступает при полном отказе либо одного из элементов /, 2, 6, 7, 8 и 9, либо при одновременном полном отказе реакторов (3, 4 и 5). [c.49]

    Параметры ХТС подразделяют на конструкционные и технологические. Конструкционными параметрами ХТС являются геометрические характеристики аппаратурного оформления элементов системы (объем химического реактора, основной размер сечения аппарата, диаметр и высота слоя насадки в массообменных аппаратах и т. д.). К технологическим параметрам ХТС относят коэффициенты степеней превращения и степеней разделения химических компонентов, коэффициенты тепло- и массо-передачи, константы скоростей химических реакций и т. д. [c.12]

    В главе на двух примерах, характерных для химической технологии (задача оценки переменных состояния химического реактора, в котором протекает нелинейная экзотермическая химическая реакция и задачу идентификации кинетических констант системы нелинейных химических реакций), подробно изложена схема решения указанных задач с применением расширенного дискретного фильтра Калмана. Обсуждены достоинства и недостатки этого метода. К последним можно отнести весьма жесткие требования к точности задания начальных условий но переменным состояния, начальных оценок искомых констант моделей, к характеру и уровню шумов объекта и помех наблюдения. [c.495]


    Топологическая структура (2.69) представляет развернутый (детализированный) 8/-элемент в связных диаграммах моделей структуры потоков. Последний фрагмент связной диаграммы системы химических реакций непосредственно стыкуется с диаграммами гидродинамической структуры потоков в аппаратах при моделировании физико-химических систем. Пример полной сигнал-связной диаграммы процесса химического превращения в реакторе идеального вытеснения приведен на рис. 2.12. [c.142]

    В книге собраны и подробно изложены основные сведения, необходимые для оптимального проектирования химических реакторов и управления ими. В ней приведены основы расчетов и оптимизации химических реакторов рассмотрен вопрос о распределении времени контактирования и перемешивании в непрерывных проточных реакторах, описаны химические реакции в гетерогенных системах. [c.4]

    Матрос Ю. Ш., Орлик В. Н. Разработка автоматической системы управления химическими реакторами на основе метода математического моделирования.— В кн. Второй советско-французский семинар по математическому моделированию каталитических процессов и реакторов. Новосибирск изд. ИК СО АН СССР, 1976, с. 188—196. [c.24]

    Если можно предсказать, как будут изменяться характеристики реакционной системы в различных условиях (скорость реакции и равновесные состояния при изменении температуры и давления), то удается сравнить результаты различного аппаратурного оформления процесса (адиабатический или изотермический процесс, единичный реактор или комбинация реакторов, проточная или периодически действующая система) и экономически оценить эффективность указанных вариантов. Только в этом случае можно надеяться, что достигнуто наилучшее оформление процесса для данных условий. К сожалению, в практике создания химических реакторов редко все бывает так просто. Часто мы не располагаем достаточными данными для сопоставления результатов расчета, не всегда можем преодолеть математические трудности или, что более вероятно, не имеем возможности тратить слишком много времени и усилий для решения математических задач. Кроме того, нельзя достаточно уверенно рассчитать реактор в отрыве от всего производства в целом. Таким образом, расчет реак/ора представляет собой некоторый компромисс между недопустимостью больших затрат труда и времени, с одной стороны, и экономическим риском принять плохое технологическое решение, с другой стороны. [c.105]

    Приведем математическое определение устойчивости химического реактора. Пусть X/ (t = 1, 2,. . п) параметры (концентрации, температуры и т. д.), характеризующие работу реактора. Система дифференциальных уравнений [c.506]

    К настоящему времени полнее всего разработаны основы математического моделирования химических реакторов с неподвижным слоем катализатора, работающих в стационарном режиме. Прп решении таких задач, как моделирование процессов, протекающих на катализаторе с изменяющейся во времени активностью, ведение процесса в искусственно создаваемых нестационарных условиях, оптимальный пуск н остановка реактора, исследование устойчивости химических процессов, разработка системы автоматического управления и другие, важно знать динамические свойства разрабатываемого контактного аппарата. Для этого необходимо построить и исследовать математическую модель протекающего в реакторе нестационарного процесса [И]. В настоящей работе, посвященной разработке реакторов с неподвижным слоем катализатора на основе методов математического моделирования, вопросы, связанные с нестационарными процессами, будут излагаться наиболее подробно. [c.6]

    В настоящее время имеется значительное количество монографий и учебных пособий, посвященных физико-химическим основам расчета химических реакторов и их математическому моделированию. Однако вопросы расчета реакторов для жидкофазных процессов освещены в них или очень кратко или вовсе не затронуты. В первую очередь это относится к гетерогенным реакторам для проведения реакци в двухфазных системах жидкость — жидкость или жидкость — газ, а также в трехфазных системах газ жидкость — твердый катализатор. Между тем расчет подобных реакторов весьма специфичен и в большинстве случаев существенно отличается от расчета апнаратов для проведения гомогенных процессов. [c.3]

    Следовательно, в модели скорость реакции должна быть К -кратной. Однако по уравнению (11-114) в системах только тогда достигается тепловое подобие, когда температура в соответственных точках модели и промышленного аппарата совпадают, т. е. температурные члены (скалярные поля) полностью соответствуют друг другу но равенство температур является условием одинаковой скорости реакций, и поэтому уравнение (11-119) невыполнимо. Эти выводы показывают, что при увеличении масштаба химических реакторов следует довольствоваться лишь приближенным подобием, для чего инженер должен знать главные влияющие на процесс величины. Основные работы в этой области выполнены Корахом [161.  [c.233]

    Конструкционный материал химического реактора в миого-продуктовых системах выбирают иа осиоис его коррозионных свойств, реакционных сред д, 1я всех процессов, которые предполагается осуществлять в реакторе. В качестве коиструкцпоп-ных материалов наиболее часто применяют углеродистую сталь нержавеющую сталь Х18Н10Т сталь с эмалевым кислотостойким покрытием сталь, футерованную керамической плиткой титан иногда пластические массы, кислого- и щелочестойкую керамику. В производствах продуктов, в которых лимитируется срдерн апие примесей и требуется высокая чистота продукта (высокочистые вещества, синтетические лекарственные средства), распространены также аппараты пз химически и термически стойкого стекла. [c.22]

    Анализ, подобный приведенному здесь, служит предметом обсуждения многих работ. Система управления ректификационными колоннами, описанная в этой книге, была разработана именно таким способомДругие заслуживающие внимания систематические исследования касаются экстракционных колонн , ректификационных колонн и химических реакторов . [c.94]

    Б p я H с к H Й В, И., Марков В. A., Софиев А. Э., Аналт фазовой плоскости регулируемого химического реактора идеального перемешивания. Приборы и системы управления. № 12. 10 (1970). [c.189]

    Реже других рассматриваются гетерогенные и трехфазные гете-рохенно-каталитические реакторы. Аппараты этих типов в общей номенклатуре химических реакторов встречаются достаточно часто. Укажем, например, на процессы гидроформилирования [16—18], гпдродесульфнрования [19], жидкофазного окисления [20, 21], жидкофазного гидрирования [22, 23], синтеза многоатомных спиртов [24, 25], синтеза изопрена [26, 27]. Список подобных процессов можно было бы значительно расширить. Однако в учебниках и монографиях Методам расчета реакторов для проведения реакций в двухфазных системах жидкость — жидкость или жидкость — газ и в трехфазных системах газ — жидкость — твердое тело уделяется очень мало внимания. [c.11]

    Интерэктность ХТС —это способность элементов, образующих систему, взаимодействовать между собой в процессе функционирования системы. Для каждого элемента ХТС взаимодействие между параметрами его входных и выходных потоков (или входных и выходных переменных элемента) обусловлено физикохимическими условиями протекания технологического процесса. Например, для химического реактора существует взаимодействие или взаимовлияние состава входного потока и температуры выходного потока для абсорбционного аппарата—взаимодействие рас- [c.40]

    Тщательный анализ работы ХЭТС и дополнительные углубленные научные исследования позволяют правильно выбрать машины и оборудование, системы энергообеспечения, КИП и системы перевода агрегата в безопасное состояние при аварийных ситуациях [13]. Создание методов расчетов химических реакторов и всей сложной ХЭТС производства аммиака позволяет уже на стадии проектирования уверенно закладывать требуемые показатели надежности [1, 2, 4]. Необходим также строгий контроль при изготовлении машин и аппаратов, при монтаже агрегатов. Исключительную роль в безопасной работе агрегатов приобретает тщательная подготовка отдельных аппа-ратой, узлов и систем к пуску. [c.109]

    Биохимические процессы в основе осуществляют превращение Одной субстанции в другую с помощью живых клеток, однако более рационально и экономично, чем химическое превращение. И в основе их описания широко используется математический аппарат описания многофазных химических реакторов. Ферментационная среда представляет собой многофазную систему, содержащую пузырьки газа (аэрирующий газ — источник кислорода), питательную жидкость и квазитвердую фазу (клетки — продуценты биомассы). Гидродинамика такой системы чрезвычайно сложна, поэтому чаще всего анализ структуры потоков сводится к псевдогомоген-ной системе (водная фаза — клетки). Но даже и в общем случае модели структуры потоков и массопереноса, полученные для процессов химического превращения, с учетом характерных особенностей могут быть использованы при исследовании биохимических реакторов [1, 50, 511. [c.141]

    Синтез реакторных систем. В практике исследований синтез реакторных систем в основном ограничивается вопросами распределения нагрузок на параллельно работаюш ие системы, распределения времени пребывания в каскадах реакторов и как самостоятельная проблема не получил достаточного развития. Большое число оптимизационных задач химических реакторов решается для исследования распределения температур, времени пребывания, старения катализатора, его регенерации и так далее, т. е. частным вопросам повышения эффективности единичных реакторов. Большое внимание уделяется также исследованию гидродинамической структуры потоков одно- и многофазных ре акторов. Вместе с тем стадия химического превращения является лишь частью химического производства и связана по крайней мере материальными потоками с другими стадиями. Подход, используемый при оптимизации технологдческой схемы на основе аддитивности критерия, не может обеспечить глобального оптимума. Большой интерес с точки зрения интегрального подхода к синтезу технологической схемы представляют реакторы с рециклами, с тепловым объединением. Очевидно, решение этих задач следует проводить совместно с синтезом схем химического превращения, так же как и с последующей стадией — выделением продуктов реакции. [c.452]

    Однонаправленное движение потоков в двухфазных системах пар — жидкость, газ — жидкость наблюдается в некоторых типах кипятильников, конденсаторах, абсорбционных и ректификационных колоннах, химических реакторах. [c.167]

    В зарубежной литературе публикации, посвященные рецик-лическим процессам, появились в основном с начала 1960-х гг. В них были рассмотрены вопросы исследования режимов работы реакторов с рециклом, расчета рециклических систем, влияния рецикла на устойчивость химических реакторов, разработки общих принципов анализа рециклических систем с учетом распределения времени пребывания (РЕП) в системе. [c.284]

    Заканчивая вводную главу, предлагаем следующий общий план изложения материала, которым будем руководствоваться. Начнем с гомогенных систем (главы И—X), рассмотрим вытекающие из теории выражения для скорости реакции (глава П), методы ее экспериментального определения (глава П1) и применение для расчетов периодически и непрерывнодействующих химических реакторов с идеальным потоком жидкости или газа (главы IV—VHI) и с неидеальным потоком в реальных аппаратах (главы IX и X). Далее обсудим дополнительные усложнения в расчетах при переходе к гетерогенным системам (глава XI) и специальные разделы посвятим некаталитическим системам жидкость—твердое вещество, системам из двух жидкостей и наконец, системам жидкость—твердый катализатор (главы XII—XIV). [c.26]


Смотреть страницы где упоминается термин Система химических реакторов: [c.177]    [c.76]    [c.192]    [c.11]    [c.148]    [c.97]   
Смотреть главы в:

Общая химическая технология -> Система химических реакторов

Общая химическая технология и основы промышленной экологии -> Система химических реакторов




ПОИСК





Смотрите так же термины и статьи:

Карпухин О.Н.,Норкин К.Б., Спиридонов В.Д. О возможности использования комплекса приборов для автоматического синтеза систем управления (КАС) для проектирования оптимальных химических реакторов

Кинетика химических реакций в динамических системах и расчет процессов синтеза моторных топлив Реакторы и реакторные узлы современных нефтеперерабатывающих установок

Реактор химический



© 2024 chem21.info Реклама на сайте