Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрий месторождения

    Другой очень важный карбонат — это карбонат натрия, также встречающийся в природе часто в смеси с другими солями, например с бикарбонатом натрия. Месторождения карбонатов имеются в ряде стран мира. Однако природных источников карбоната натрия недостаточно для удовлетворения потребности в нем, и поэтому большие количества его вырабатывают искусственно по так называемому методу Сольвэ получаемый таким образом карбонат натрия носит название кальцинированной соды. В процессе Сольвэ для получения карбоната и бикарбоната натрия используют довольно сложную аппаратуру по переработке аммиака, углекислого газа, хлорида натрия и известняка. Процесс этот циклический, причем сырьем служат только хлорид натрия и известняк. [c.170]


    Хлорид натрия встречается в природе в огромных месторождениях. Он является основой для целого ряда важнейших производств, таких, как производство натрия, едкого натра, соды, хлора и др. [c.489]

    Температурной устойчивостью должны обладать ингибиторы, используемые для подачи в пласты с высокой температурой. Например, в работе [17] отмечается, что гексаметафосфат натрия не пригоден для задавки в пласт на некоторых месторождениях Западной Сибири, так как при высоких пластовых температурах гидролизуется и резко снижает свои ингибирующие качества. [c.247]

    В пластовых водах нефтяных месторождений Советского Союза соотношение хлоридов натрия, магния и кальция изменяется в широких пределах. [c.9]

    Результаты многочисленных исследований минерального состава пластовых вод показывают, что основную долю растворенных веществ составляют хлориды натрия, магния и кальция. Кроме них (в зависимости от месторождения) могут присутствовать иодистые и бромистые соли щелочных и щелочноземельных металлов, сульфиды натрия, железа, кальция, соли ванадия, мышьяка, германия и др. Но в отличие от хлоридов, содержание которых исчисляется процентами и десятками процентов от общего количества растворенного вещества, содержание остальных солей измеряется сотыми, тысячными и еще меньшими долями процентов. В связи с этим минерализацию пластовой воды часто измеряют по содержанию ионов хлора в единице объема с последующим пересчетом на эквивалент натриевых солей. [c.9]

    В Советском Союзе имеются громадные месторождения сульфатов кальция и натрия, которые пока что не используются в производстве серной кислоты, т. е. являются потенциальным сырьем. Необходимо также использовать гипс, который является отходом производства фосфорной кислоты путем воздействия серной кислоты на природные фосфаты кальция. При травлении стали серная кислота превращается в сульфаты железа. При очистке нефтепродуктов остается кислый гудрон, содержащий серную кислоту. В ряде органических производств получается в виде отхода разбавленная серная кислота, сильно загрязненная органическими примесями. Все эти и им подобные отходы производств, содержащие серную кислоту или ее соли, при нагревании в присутствии восстановителей дают диоксид серы, который можно перерабатывать на серную кислоту. [c.118]

    Пластовые воды нефтяных и газовых месторождений представляют собой. высокоминерализованные растворы солей [12] преимущественно хлористого натрия и кальция, однако при отсутствии в их сероводорода, углекислого газа или кислорода оказывают, как правило, слабое [c.11]


    После описанной переработки нефтяных эмульсий в полученной нефти еще содержится примесь различных солей — хлористого натрия, хлористого кальция, хлористого магния и других. Воды нефтяных месторождений обычно содержат в растворенном виде различные соли. Эти соли попадают частично и в нефть. Если [c.249]

    Аналогично получали меркаптаны из дистиллята 200— 300° С тереклинской нефти ишимбайского месторождения [33]. При обработке дистиллята смесью 33%-ного ВОДНОГО раствора едкого натра и этанола в соотношении [c.111]

    Автором предложена рецептура нефтеэмульсионного бурового раствора, лишенная этого недостатка. За основу бы.т принят буровой раствор, содержащий 26% (по массе) кудиновской глины, 8% силиката натрия и 2% КМЦ-50О, в который вводили сырую нефть Троицкого месторождения или дизельное топливо. В качестве эмульгатора применяли неионогенное ПАВ ОП-10, а в качестве пеногасителя — полиэтиленовую крошку (ПЭК) в дизельном топливе в виде раствора 10%-ной концентрации. Термостатирование проводили в автоклаве при температуре 160° С в течение 4 ч. Часть полученных данных представлена в табл. 78. [c.202]

    В СССР до последнего времени перборат натрия не вырабатывался. В связи с открытием новых месторождений боратовых руд и постоянно растущей потребности в моющих средствах в настоящее время производство пербората натрия интенсивно развивается. [c.211]

    Взятый нами для исследования бензин был получен из нефти (скв, 12) супсинского месторождения (Грузия). Из этого бензина была выделена фракция, выкипающая в пределах 122—150°. Полученная фракция была промыта 75%-ной серпой кислотой, затем 107о-ным раствором соды и дистиллированной водой. После высушивания над хлористым кальцием и перегонки в присутствии металлического натрия в ней были определены показатель лучепреломления, удельный вес и максимальная анилиновая точка. После удаления ароматических углеводородов было проведено каталитическое дегидрирование фракции на платинированном угле (22% платины), приготовленном по Н. Д. Зелинскому и М. Б Туровой-Поляк [16]. Активность катализатора была проверена проведением над ним циклогексана с объемной скоростью [c.87]

    Нефть мирзаанского месторождения из 9, И, 12 и 15 горизонтов подвергалась дробной перегонке. Полученные фрак-нии 60—95°, 95—122°, 122—150°, 150—200 взбалтывались с 75 7о-ной серной кислотой в течение 15 мин., затем промывались водой, 10 %-ным раствором соды, снова водой, сущились над хлористым кальцием и перегонялись в присутствии металлического натрия. Для полученных фракции были определены удельный вес, показатель лучепреломления и анилиновая точка. Для опытов применялся свсжевысушениый и свежеперегнанный анилин, чистота которого проверялась анилиновой точкой индивидуального углеводорода. Ароматические углеводороды выделялись серной кислотой, которая содержала 1,5% свободного серного ангидрида. Смесь бензниа н серной кислоты помещалась в склянку на трясучке и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов контролировалось качественной реакцией (серная кислота + формалин). Деароматизированные фракции промывались, сушились и перегонялись в при- [c.141]

    Нефть, извлекаемая из скважин, всегда содержит в себе попутный газ, механические примеси и 1тластовую воду, в которой растворены различные соли, чаще всего хлориды натрия, кальция и магния, реже — карбонаты и сульфаты. Обычно в начальный период эксплуатации месторождения добывается безводная или малооб — нодненная нефть, но по мере добычи ее обводненность увеличива — (гтся и достигает до 90 — 98 %. Очевидно, что такую "грязную" и сырую нефть, содержащую к тому же легколетучие органические (от метана до буп ана) и неорганические (Н 5, СО ) газовые компоненты, нельзя транспортировать и перерабатывать на НПЗ без тщательной ее промысловой подготовки. [c.142]

    Свойства и происхождение балхашита могут служить доказательством того, что нерастворимые твердые вещества в горючих сланцах могли также первоначально представлять собой твердые полимеры жирных веществ или жирных кислот. Эта точка зрения подтверждается тем, что хорошо известные сланцы месторождений Грин Ривер в Колорадо, а также Вайоминга и Юта содержат относительно большое количество полутора- и бикарбоната натрия, находящегося в сланцах в виде включений белой кристаллической массы. (В одном из районов эти сланцы используются в промышленном масштабе для производства соды). Как будет показано дальше, существуют доказательства того, что конверсия тяжелых остаточных продуктов в нефть, содержащую легкие фракции, и большое разнообразие углеводородов обусловлены реакцией иона карбония, индуцируемой кислыми алюмосиликатными катализаторами, находящимися в контакте с нефтью. Кокс, Уивер, Хенсон и Хенна считают [16], что в присутствии щелочи катализ не осуществляется. В связи с этим возможно, что сохранение твердого органического вещества в битуминозных сланцах месторождения Грин Ривер и других залежах обусловлено присутствием щелочей. Предполагают, что сланцы месторождений Грин Ривер откладывались в солоноватых внутренних озерах в условиях, напоминающих условия образования современного балхашита [6]. Поэтому можно считать, что ненасыщенные растительные и животные жиры и масла представляли собой первичный исходный материал как для нефти, так и для так называемого керогена битуминозных горючих сланцев, образующих первоначально твердое заполимеризовавшееся вещество., Однако в сланцах, содержащих щелочь, НС наблюдалось медленного химического изменения, приводящего к образованию нефти [13а]. Природа минеральных компонентов битуминозных сланцев также может способствовать сохранению органического вещества и препятствовать его провращевию в нефть. Битуминозные сланцы месторождения Грин Ривер в большинстве своем содержат магнезиальный мергель. [c.83]


    Щелочные металлы в природе. Получение и свойства щелочных металлов. Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений. Натрий и калнй принадлежат к распространенным элементам содержание каждого из них в земной коре равно приблизительно 2% (масс.). Оба металла входят в состав различных минералов и горных пород силикатного типа. Хлорид натрия содержится в морской воде, а также образует мощные отложения каменной соли во многих местах земного шара. В верхних слоях этих отложений иногда содержатся довольно значительные количества калия, преимущественно в виде хлорида илн двойных солей с натрием и магнием. Однако большие скопления солей калия, имеющие промышленное значение, встречаются редко. Наиболее важными из них являются соликамские месторождения в СССР, стассфуртские в ГДР и эльзасские — во Франции. Залежи натриевой селитры находятся в Чили. В воде многих озер содержится сода. Наконец, огромные количества сульфата натрия находятся в заливе Кара-Богаз-Гол Каспийского моря, где эта соль в зимние месяцы толстым слое.м осаждается на дне. [c.562]

    Еще в. 1875 г. Хант обратил внимание на некоторые характерные особенности подземных вод — спутников нефтей по месторождениям. Наиболее существенными особенностями являются отсутствие сульфатов, высокое содержание ионов Na и С1, причем преобладание хлора над натрием (отношение Ка/С1 всегда меньше 1) указывает на связь иона хлора, помимо натрия, с каким-то другим, в данном случае, несомненно, с кальцием. Хант назвал эти воды хлорокальциевыми и высказал предположение, что они представляют собою остаточный рассол древних морей, химический состав которых отличался от состава морей современных. [c.106]

    Хорошим растворяющим эффектом обладают растворы едкого натра. Например, на некоторых месторождениях Пермской области широко используют 20 %-ный водный раствор NaOH. Действие гидроксида натрия на гипс протекает по реакции [c.237]

    Брикеты готовятся из каолина Кыштымского месторождения, имеющего примерно следующий химический состав Юз—47— —53 % РезОз—0,5—1 %, атакже небольшие количества окислов титана, магния, кальция, натрия и др., с добавкой около 30 % технического глинозема—окиси алюминия А12О3, содержащей незначительные примеси кремния и железа (ЗЮг—0,2%,. РегОз—0,05 %) кроме того, предусматривается возврат отсева мелочи после прокалки брикетов. [c.265]

    Природные ресурсы. Содерл<ание азота в земной коре составляет 0,04%. Основная масса азота сосредоточена в атмосфере воздух содержит 78,03% (об.) N2, 20,99 /о (об.) О2, 0,94% (об.) Аг, кроме того, в нем есть СО2, благородные газы, вод,яной пар. Имеется только одно значительное месторождение соединений азота— залежи нитрата натрия ЫаНОз в Чили. Азот содержится во всех живых организмах, развитие л< изни без него невозможно, поскольку белки — азотсодержащие соединения. [c.392]

    Была проведена промышленная проверка возможности регенерации натрий-катионитовых фильтров систем водоподготовки ТЭЦ солью, выделенной из стоков ЭЛОУ. В период проведения опытов на фильтр первой ступени подавалась вода с общей жесткостью 4,7 мг экв/л. Всего за фильтроцикл было умягчено 463 воды. При этом жесткость умягченной воды в начале и конце опыта составляла соответственно 35 и ПОО мкг экв/л при норме остаючной жесткости для фильтров первой ступени 1500 мкг экв/л. Затем был проведен контрольный опыт на этом же фильтре, регенерированном таким же количеством технической соли Артемовского месторождения. За фильтроцикл было пропущено 434 м воды, жесткость которой составляла 30—790 мкг экв/л. Следует заметить, что для полной регенерации фильтра необходимо большее количество соли, чем было представлено на испытание, этим и объясняется завышение жесткости умягченной воды в начальный период работы фильтра, регенерированного как исследуемой, так и контрольной солью. Таким образом, одним из потребителей извлеченной из стоков ЭЛОУ соли может быть заводская ТЭЦ. [c.92]

    В пластовых водах нефтяных месторождений соотношение хлоридов натрия, магния и кальция различно например, для арланской нефти оно составляет 56 10 34, для ромашкинской - 86 6 8 и для самотлорской 59 6 35. [c.8]

    Для сопоставления в табл. 3 приведены результаты анализа пластовых вод Ромашкинского и Арланского месторождений. Как видно из этих результатов, соотношение хлоридов натрия, магния и кальция совершенно другое для арланской нефти соответственно 56 10 34 и для ромашкинской 86 6 8. [c.9]

    В водах многих нефтяных месторождений присутствуют иодистые и бромистые соли щелочных и щелочно-земельных металлов. В некоторых водах, возможно, содержатся сульфиды натрия, железа, кальция и нафтенаты. Кроме указанных соединений, которые дают истинные растворы, в воде могут присутствс ать и соли кремниевой кислоты, соединения никеля, марганца, магния, способные образовывать с водой коллоидные растворы и суспензии. [c.10]

    Источников связанного азота в природе, имеющих промышленное значение, крайне мало. Крупные месторождения связанного азота в виде нитрата натрия были найдены лишь в Чили и ноздпее в Южной Африке. Некоторое количество связанного азота (в виде сульфата аммония) получается при переработке коксового г-аза, однако этот источник сравнительно невелик. Синтез соединений азота из свободного атмосферного азота был осуществлен в начале XX в. тремя методами дуговым, цианамидным и аммиачным. [c.84]

    Природные растворимые соли встречаются в виде солевых залежей или естественных растворов (рассолы, рапы) озер, морей и подземных источников. Основные составляющие солевых залежей или рапы соляных озер хлорид натрия, сульфат натрия, хлориды и сульфаты калия, магния и кальция, соли брома, бора, карбонаты (природная сода). Советский Союз обладает мощными месторождениями ряда природных солей. В СССР имеется более половины разведанных мировых запасов калийных солей (60%) и огромные ресурсы природного и коксового газа для получения азотнокислых и аммиачных солей (азотных удобрений). В СССР есть большое количество соляных озер, рапа которых служит источником для получения солей натрия, магния, кальция, а также соединений брома, бора и др. Основными методами эксплуатацни твердых солевых отложений являются горные разработки в копях и подземное выщелачивание. Добычу соли в копях ведут открытым или подземным способом в зависимости от глубины залегания пласта. Таким путем добывают каменную соль, сульфат натрия (тенардит), природные соли калия и магния (сильвинит, карналлит) и т. д. Подземное выщелачивание является способом добычи солей (главным образом поваренной соли) в виде рассола. Этот метод удобен, когда поваренная соль должна применяться в растворенном виде — для производства кальцинированной соды, хлора и едкого натра и т. п. Подземное выщелачивание ведут, размывая пласт водой, накачиваемой в него через буровые скважины. Естественные рассолы образуются в результате растворения пластов соли подпочвенными водами. Добыча естественных рассолов производится откачиванием через буровые скважины при помощи глубинных насосов или сжатого воздуха (эрлифт). Естественные растворы поваренной соли, используемые как сырье для содовых и хлорных заводов, донасыщают каменной солью в резервуарах-сатураторах и подвергают очистке. Иногда естественные рассолы [c.140]

    В ТатНИИнефтемаше совместно с Центральным котлотурбинным институтом и другими организациями разработана специализированная водогрейная установка УВ-150/150, предназначенная для нагрева до 150—300 °С и пода чи в пласт пресной воды под давлением 7— 15 МПа. В этой установке воду подвергают двухступенчатому натрий-катионированию, термической деаэрации и нагревают до необходимой температуры. На месторождении Узень действует водогрейная установка морской воды с производительностью 15 000 м /сут, с помощью которой осуществляют опытно-промышленную закачку горячей морской воды в продуктивный пласт. Морская вода из в одовода -по ступает в водогрейный котел ПТВМ-100. После нагрева до 100°С вода идет в отстойники открытого типа (в которых происходит термическая деаэрация воды), откуда подается насосами под давлением 15 МПа на водораздаточные пункты, где ее распределяют непосредственно по скважинам. Среднее время нахождения воды в отстойниках примерно [c.209]

    Пластовые воды юрских отложений зтих месторождений относятся к сред-исминерализованным. Соли в них представлены пренмуществеч хлоридами натрия и кальция, сухой остаток находится в пределах 12—15% при плотности веса 1,09-1,11. [c.78]

    Первичные асфальтены, выделенные из природного битума месторождения Атабаски (Канада), окислялись перекисью натрия в постоянно перемешиваемой водной взвеси [59, 60]. В резульг тате окисления асфальтенов в течение 30 час. при комнатной температуре были получены окисленные асфальтены, которыр были разделены па нерастворимые (91—93%) и растворимые (4,5—6%) в щелочи компоненты. Результаты исследования продуктов окисления приведены в табл. 38. [c.139]

    ОНГКМ характеризуется высокими пластовым давлением (в начале эксплуатации 20,6 МПа) и температурой пласта (до 369 К), значительным содержанием в газе агрессивных компонентов (НзЗ и СО2). Содержание сероводорода в конденсате на всей площади месторождения различное на западном и центральном куполах месторождения в пределах 1,4-1,8% на восточном — до 4,7%. Отмечено также повышенное содержание углекислого газа (до 1,5%), азота (до 3,5-7,5%) и меркаптано-вой серы (до 1000 мг/м ). В пластовой воде ОНГКМ содержится до 240 г/л солей хлоркальциевого типа. Концентрация хлор-ионов достигает 200 г/л кальция — до 10 г/л натрия — 5 г/л. [c.230]

    Основными источниками нафтеновых кислот служат сырые нефти из месторождений Калифорнии, Венесуэлы и Румынии. Кислоты, имеющие техническое значение, выделяют главным образом из фракций газойля прямой гонки, кипящих в интервале 200—370° некоторые кислоты извлекают из легких керосиновых фракций. Нафтеновые кислоты выделяют из нефтяных фракций обработкой последних разбавленным раствором едкого натра, который связывает все кислоты среднего молекулярного веса, представляющие интерес для промышленности, и оставляет в углеводородной фазе более слабые кислоты с высоким молекулярным весом, смолистые по своему виду. Водный щелочной раствор нафтеновых кислот можно обработать легкой нафтой, которая извлечет углеводородные примеси, в результате чего содержание последних в товарных нафтеновых кислотах понизится. Из щелочного раствора нафтеновые кислоты выделяют подкислением серной [c.395]

    На основании лабораторных данных для предупреждения преждевременной обводненности скважин автором было предложено применение солеустойчивых реагентов для стабилизации промывочных жидкостей при бурении ряда скважин на площадях Арланского месторождения. Следует отметить, что большинство эксплуатационных скважин этого месторождения дают обводненную продукцию. В этом районе промывочные жидкости обрабатывают, как правило, каустической или кальцинированной содой, гексаметафосфатом натрия и значительно реже — крахмалом, КМЦ-350, КССБ. [c.248]

    Сырьем для производства продуктов неорганической химии служат элементарная сера, серосодержащие газы, колчеданы, фосфорсодержащие руды, калийное сырье, поваренная соль, сульфат натрия и др. Важнейшими месторождениями являются Хибинское на Кольском полуострове (апатиты), Каратау (фосфориты), Верхнекамское на Урале и Стебниковское в Белоруссии (калийное сырье), Роздольское в Западной Украине и Среднеазиатское (сера), Соликамское на Урале (поваренная соль) и др. [c.45]

    Нефть, добываемая на промыслах, всегда содержала некоторое количество эмульгированной пластовой воды с растворенными в ней хлористыми солями натрия, магния и кальция. Хлористые соли, содержащиеся в нефти, при перегонке нефти и крекинге гидролизовались с выделением хлористого водорода, сильно корродирующего аппаратуру и оборудование нефтеперерабатывающих заводов. Кроме того, соли отлагались в трубах теплообменников и подогревателей нефти, снижая срок их службы. В пластовой вюде, соответствующей нефтям восточных месторождений, содержа-Еме хлористых солей было самое высокое и колебалось от 16 до 26 %. [c.78]

    Для получения углегуминовых сорбентов авторами использован окисленный бурый уголь Загустайского месторождения. Содержание гуминовых кислот в угле составляет - 70% на органическую массу угля. Количество гидроксида натрия, для извлечения гуминовых кислот рассчитывали исходя из суммарного содержания кислых функциональных фупп, содержание которых составляет 6.1 мг экв/г. Во всех опытах количество гидроксида натрия было эквивалентно суммарному содержанию гидроксильных групп. Механообработку углей проводили в активаторе-измельчигеле АИ 2/150 (мельница планетарного типа, два сосуда по 150 мл, мелющие металлические шары d=8 мм). Продолжительность активации составила 5 мин. Изучение возможности использования полученных сорбентов для очистки воды от ионов железа проведено в статических условиях. Изменение концентрации ионов железа в растворе определяли колориметрически. Эксперимент показал удовлетворительную адсорбционную емкость сорбента по железу. Эффективность очистки составляет 70-80 %. [c.116]

    Как показали результаты экспериментов с рудным образцом Северо-Файзулинского месторождения, содержащего 30.2% масс, диоксида марганца, йри массовом отношении хлористого натрия [c.107]

    Многократные контакты с водой, сорбентами, химическими реагентами имеют место и в условиях добычи нефти. Эти контакты могут приводить к изменению микроэлементного состава углеводородных продуктов. Показано [90], что нефть сравнительно прочно удерживает одни микроэлементы, но легко обменивается с другими, которые находятся в водной фазе. Так, после шестичасового перемешивания нефти Советского месторождения с бидистилли-рованной водой концентрации ванадия, никеля, кобальта, железа, цинка и хрома в нефти не изменились в то же время вода извлекла значительное количество натрия (до 80%), сурьмы (до 22%) и мар-танца (до30%). При дальнейшей промывке нефти бидистиллиро-ванной водой концентрации этих элементов в нефтях менялись незначительно. [c.106]

    МНОГИХ местах земного шара. В верхних слоях этих отложений иногда содержатся довольно значительные количества калия, преимущественно в виде хлорида или двойных солей с натрием и магнием. Однако большие скопления солей калия, имеющие промышленное значение, встречаются редко. Наиболее важными из них являются соликамские месторождения в России, страссфуртские в Германии и эльзасские — во Франции. Залежи натриевой селитры находятся в Чили. [c.383]

    АСБЕСТ — группа природных минералов, имеющих волокнистое строение, благодаря чему они могут расщепляться на отдельные крепкие волокна. По своему химическому составу асбестовые минералы являются водными силикатами магния, железа, кальция и натрия например, крокидолит-А. имеет такой состав ЖзгО 6 (Ре, Mg) О 2РезОз X X 173102 ЗН2О. Крупные месторождения Л. в СССР есть на Урале. Из волокон Л. длиной более 8 мм изготовляют фильтры, брезенты, защитные костюмы (для пожарников) и др. Из волокон меньших размеров изготовляют шифер, асбоцементные изделия, спецкартон, бумагу, тепло- и электроизоляционные материалы и др. [c.31]


Смотреть страницы где упоминается термин Натрий месторождения: [c.60]    [c.164]    [c.8]    [c.43]    [c.520]    [c.115]    [c.396]   
Натрий (1986) -- [ c.8 ]




ПОИСК







© 2025 chem21.info Реклама на сайте