Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коксовый газ переработка

    Полученные разносторонние материалы дают все необходимые данные для проектирования и эксплуатации производств по получению технологических газов для синтеза аммиака и спиртов методом каталитической конверсии газов природных, коксовых, переработки нефти и многих других, содержащих метан и его гомологи. [c.382]

    Понятно, что затраты на коксовую переработку угля были значительны, а следовательно, и получаемые продукты были дороже исходного угля. По этой причине газ, как правило, применялся в областях бесспорного преимущества над другими видами топлива. Появление в конце века дешевой и эффективной электроэнергии привело к снижению производства светильного газа. Разработка новых технологий и методов получения искусственного газа позволили снизить его себестоимость. [c.18]


    Неорганическая сера удаляется пропусканием газа через люкс-массу (окись железа — красный шлам, получаемый как отход при переработке бокситов) и болотную руду при нормальной температуре. Этот метод используется также и для сероочистки бытового и коксового газа. Сероводород связывается по реакции [c.81]

    Установок, на которых крекируются непосредственно нефти и легкие мазуты, насчитывается немного. Процессы переработки высокосмолистых видов сырья над крекирующими катализаторами разработаны сравнительно недавно. Учитывая специфические особенности такого сырья, а именно, высокое коксовое число и повышенное содержание солей, крекинг мазутов й нефтей рекомендуют проводить над относительно недорогими природными катализаторами пониженной активности [3, 95]. [c.28]

    Каталитиче- Переработка Окислительный екая конвер- коксового Газификация пиролиз сия метана газа кокса [c.17]

    Углеводородные газы (природные, попутные, коксовый) содержат примеси — сернистые соединения, способные отравлять катализаторы, вызывать коррозию и загрязнение аппаратуры. Одной из первых стадий переработки газов для синтеза аммиака является очистка от сернистых соединений. В промышленности применяют несколько способов очистки газа от сернистых соединений абсорбционный, мышьяково-содовый, сухой очистки активным углем, каталитический, очистки поглотителями на основе окиси цинка. [c.46]

    Скорость выгорания кокса зависит от его свойств, которые, в свою очередь, определяются качеством перерабатываемого сырья и условиями его переработки. Основная горючая составляющая кокса — углерод. Кроме того, в коксовых отложениях содержится остаточный водород, масса которого может составлять от десятых долей до нескольких процентов относительно массы кокса. Для всех случаев процесс регенерации характеризуется преимущественным выгоранием водородсодержащих компонентов, т. е. чем богаче кокс водородом, тем быстрее он выгорает при регенерации и тем короче фаза регенерации [3.18]. Преимущественное выгорание водорода, по-видимому, связано с его неравномерным распределением в объеме коксовых частиц, которое создается в процессе их формирования [3.31]. Если образование коксовых отложений протекает в среде, содержащей серу, то последняя также частично переходит в кокс. Закономерности выжига коксовых отложений сложного состава, в частности серосодержащих, изучены пока недостаточно. Результаты исследований окисления коксовых отложений на поверхности катализаторов гидроочистки показали, что сера выгорает быстрее, чем углерод [3.52], однако остается непонятным, выгорает сера, входящая в состав коксовых отложений, или происходит окисление сульфида металла катализатора [3.30, 3.45, 3.52]. [c.77]


    Важным промышленным способом получения водорода служит также его выделение из коксового газа или из газов переработки нефти. Оно осуществляется глубоким охлаждением, при котором все газы, кроме водорода, сжижаются. [c.343]

    На рис. 28 представлена принципиальная схема установки замедленного коксования пропускной способностью 600 тыс. т в год, рассчитанная на переработку малосернистых остатков. На установке четыре коксовых камеры 1 и две трубчатых нагревательных печи 3 и 4. Исходное сырье поступает двумя параллельными потоками в трубы подовых и потолочных экранов печей и, нагретое до 350—380 °С, направляется в нижнюю часть ректификационной колонны 6. В этой секции колонны сырье встречается с потоком паров продуктов коксования из двух параллельно работающих ка- [c.72]

    Предложена технологическая схема переработки сланцевой смолы, включающая коксование, гидрогенизацию фракции > 205 °С, каталитический крекинг гидрогенизата >205 °С и риформинг фракций <205 °С коксового дистиллята и гидрогенизата. Однако при гидроочистке удаляется только 80% азота остаточное содержание азота в сырье для риформинга 0,26%, в сырье для крекинга 0,49%. Суммарный выход бензина 52, 3%, дизельного топлива 19,1% [c.32]

    Выход жидких иродуктов при гидрогенизации сырой сланцевой смолы составил 89%, а при гидрогенизации коксового дистиллята 97%. Полученные продукты требуют дальнейшей переработки [c.44]

    В-третьих, процесс каталитического крекинга газойля был усовершенствован настолько, что в переработку, кроме прямо-гонного газойля, стали вовлекать и тяжелые газойли коксова- [c.123]

    Основное тепло вносится в реактор с теплоносителем, что наиболее дешево и удобно, особенно при переработке высокосернистого сырья. Неудовлетворительная конструкция циклонов может привести к забиванию их и выводных патрубков коксовой пылью, коксом, образовавшимся при высокой температуре из тяжелых фракций дистиллята, выносу большого количества пыли в верхнюю часть колонны и забиванию колпачков на нижних тарелках. [c.127]

    Из прямогонного сырья получается кокс с более волокнистой текстурой, меньшей механической прочностью и большей упругостью, чем из крекинг-остатка той же нефти. Поэтому для получения кокса с лучшими механическими свойствами в первые годы освоения коксовых кубов в Грозном перешли от переработки прямогонного сырья к коксованию крекинг-остатка сначала грозненских парафинистых, а затем малгобекских и бакинских нефтей (парафино-ароматического и нафтено-парафинового оснований), дающих кокс менее упругий и с лучшими показателями по пластичности (больший А рел.)- [c.187]

    Конверсия остаточного масла. Как уже говорилось выше, гидрообработка остатков с целью обессеривания, деметаллизации и снижения содержания коксового остатка по Конрадсону обеспечивает ряд преимуществ для дальнейшей переработки. [c.104]

    При каталитической переработке углеводородов на поверхности катализатора с большей или меньшей скоростью накапливаются высокомолекулярные, обедненные водородом продукты, называемые коксом. Отложения кокса, покрывая активную поверхность катализатора, прекращают доступ к ней молекул сырья. Удаление коксовых отложений с поверхности катализатора путем их газификации кислородом, двуокисью углерода или водяным паром приводит к восстановлению активности катализатора. [c.137]

    Установить обш,ие принципы организации и экою-мическую значимость следующих технологических п о-цессов а) получение синтетического бензина б) полукоксование (скоростной пиролиз) с последующей переработкой смолы, гидрогенизация угля, газификация угля и синтез углеводородов, газификация угля в) мокрэе и сухое тушение кокса г) сухое тушение кокса по традиционной схеме и комбинирование сухого тушения и термической подготовки шихты д) получение при улавливании аммиака из коксового газа суль( )ата аммонля или безводного аммиака. [c.247]

    Достаточно подробная характеристика нефтяных остатков быу.а приведена в табл. 7.4 применительно к термодеструктивным процессам их переработки. Наиболее важными из показателей кач ества нефтяных остатков как сырья для каталитических процес — сов их облагораживания и переработки являются содержание металлов (определяющее степень дезактивации катализатора и его расход) и коксуемость (обусловливающая коксовую нагрузку реге — нераторов каталитического крекинга или расход водорода в гидро — ген изационных процессах). Имергно эти показатели были положены в основу принятой за рубежом классификации остаточных видов сы))ья для процессов каталитического крекинга. По содержанию ме аллов и коксуемости в соответствии с этой классификацией не( тяные остатки подразделяют на следующие четыре группы  [c.221]

    Смешанный поток поступает в сепаратор 12 для очистки от коксовой пыли, образующейся в процессе деструктивной переработки сырья в зоне реакции. Отсепарированный поток поступает в систему теплообменников-холодильников 13, а затем в сепаратор 14. Часть жидкого потока возвраш,ается в продуктовый поток, большая же часть направляется в колонну 19. Крекинг-газы подаются на газоразделение в колонны 17 и 18. Природный газ подавляет реакцию коксообразования и повышает турбулизацию потока, что способствует снижению коксообразования в процессе термического крекинга. Метакрекинг позволил повысить октановое число прямогонного бензина с 68—64 до 72—76. [c.217]


    Метан (СН4) — бесцветный газ, без запаха н вкуса. Молекулярная масса 16,04, плотность 0,72 кг/м при 0°С и 760 мм рт. ст. Температура кипения минус 161,58°С, температура плавления минус 182,49°С, плотность по воздуху 0,5543, в воде не растворим. Метан не ядовит. При высоких концентрациях оказывает наркотическое действие и может вызвать удушье. В процессе переработки природного и коксового газов получаются полутные газы — окись и двуокись углерода, которые входят в состав азотоводородной смеси. [c.22]

    При переходе к тяжелому нефтяному сырью увеличивается доля коксовых отложений, образованных за Счет реакций конденсации термически нестабильных компонентов и исходных коксогенных соединений ( асфальтенов и смол). В литературе в основном приводятся результаты исследований, касающиеся образования и окисления углеродистых отложений на железоокисных катализаторах при переработке легкого углеводородного сырья, не содержащего гетеросоединений и асфальто-смолистых веществ. Тем не менее, общие закономерности образования и выгорания коксовых отложений, полученные для низкомолекулярного углеводородного сырья, могут быть использованы при исследовании же-лезоокисных катализаторов переработки тяжелого сернистого нефтяного сырья. [c.62]

    При термокаталитической переработке происходит взаи-модсйстние железоокисного катализатора, приводящее к образованию новой твердой фазы коксовых отложений, т. е. мы имеем дело с топохимической реакцией, для которой характерны некоторые общие закономерности, а именно протекание реакции через образование ядер (зародышей) новой твердой фазы и их рост. В реакциях газа с твердым телом образование этих зародышей происходит, как правило, на поверхности твердого реагента или, по крайней мере, в слое, прилегающем к этой поверхности. После появления новой фазы реакция обычно локализуется на поверхности раздела твердых фаз — реагента и продукта реакции [3.39]. Химические свойства поверхности в принципе определяются природой протекающих химических превращений и их скоростями И то и другое может быть оценено лишь в результате трактовки косвенных измерений. В случае исследования реакции твердого тела с газом анализ может быть проведен с учетом -изменения состава газовой фазы. [c.71]

    При переработке тяжелых видов нефтяного сырья с высокой коксуемостью саморегенерирующей способности железоокисных катализаторов недостаточно для полного удаления коксовых отложений в течение длительного времени работы, что требует использования отдельной стадии окислительной регенерации, позволяющей одновременно осуществить нагрев циркулирующего катализатора до необходимой температуры. [c.76]

    Углеперегонка при высоких темлературах (800—1000°) является операцией, известной с давних пор и с успехом тарименяемой на коксовых и газовых заводах. При этой переработке получают  [c.384]

    Блестящее решение проблемы сокращения расходов серной кислоты и рационального использования ее в отработанном виде заключается в сочетании производства синтетического этилового спирта с каким-либо другим химическим производством. В частности, при организации в промышленных масштабах синтеза этилового спирта из этилена коксового газа совершенно не нужно стремиться к получению высококонцептрировапной серной кислоты после гидролиза, поскольку в комплекс химической переработки продуктов коксования каменного угля входит также производство синтетического аммиака, и поэтому гидролиз этилсерной кислоты можно проводить смесью паров воды и аммиака, в результате чего образуется водный раствор сульфата аммония. В производстве этилового спирта из этилена газов крекинга и пиролиза нефти параллельно можно получать изопропиловый, бутиловый и амиловый спирты. В этом случае 80—85 %-ную серную кислоту после гидролиза (в производстве этилового спирта) без предварительного концентрирования можно использовать в производстве изопропилового и дру1 их высших спиртов. [c.24]

    При двухстуиенчатой переработке мазутов, как было указано, в первой стунени осуществляют легкий крекинг мазута на пылевидном катализаторе с низкой активностью, в результате чего достигают максимального выхода целевой фракции 350—500 С при минимальном образовании газа и кокса. Бо второй ступени проводится каталитическая переработка отобранной фракции 350—500 °С над активным алюмосиликатным катализатором Такой вариант не применим к мазутам из нефтей Восточных районов вследствие высокого содержания в них асфальто-смолистых всчцеств (коксовое число 9,3), так как в этом случае наблюдается образование значительного количества коксовых отложений, что в свою очередь ограничивает глубину разложения мазута и приводит к получению фракции 350—500 С низкого качества, непригодной для переработки во второй ступени. [c.248]

    При сопоставлении данных контактного коксования бакинского мазута на различных теплоносителях установлено преимущество коксового теплоносителя при этом выход целевой фракции достигает 62,2 %. Суммарный материальный баланс двухступенчатой переработки мазута, если в первой ступени теплоносителем является порошкообразный кокс, а во второй стунени — синтетический алюмосиликатный катализатор с индексом активности 34, такой (%)  [c.250]

    Из приведенных в табл. 3 данных видно, что наибольший интерес исследователей вызывают сланцевые смолы, а наименьший — коксовые. Это находится в прямой зависимости от легкости гидрирования смол, убывающей в ряду сланцевые > угольные полукоксо-вые ]> угольные коксовые Как и при гидрировании углей, наибольшее внимание привлекает получение не столько топливных, сколько химических продуктов, особенно фенолов , а также низших ароматических углеводородов . Это понятно, так как переработка смол дороже, чем переработка нефти, и поэтому желательно получение более ценных, чем топливо, продуктов. Был разработан ряд принципиальных технологических схем переработки сланцевых н угольных смол на химические продукты и топлива . В этих схемах помимо технологических приемов, позволяющих сохранять ценные фенолы и ароматические углеводороды, применялись и специально разработанные катализаторы Была осуществлена гидро- [c.27]

    К настоящему времени наметились три принципиальных подхода к проблеме переработки нефтяных остатков в малосернистое котельное топливо 1) возможно большая часть остатка перегоняется, дистиллят гидроочищается обычными методами и смешивается с остатком перегонки (этот вариант может быть дополнен де-асфальтизацией остатка перегонки с добавкой деасфальтизата к гидроочищаемому дистилляту) 2) то же плюс коксование остатка и гидроочистка коксового дистиллята и 3) прямое гидрообессеривание сырой нефти или нефтяных остатков. [c.302]

    Достаточно подробная характеристика тяжелых нефтяных остатков (ТНО) применительно к термодеструктивным процессам их переработки была приведена в гл. 2 и 3 (см. табл. 2.2 и 3.2). Наиболее важными из показателей качества ТНО как сырья для каталитического крекинга являются коксуемость (обусловливающая коксовую нагрузку регенератора) и содержание металлов (определяющее степень дезактивации катализатора и его расход). Именно эти показатели были положены в основу принятой за рубежом к (ассификации остаточных видов сырья для ККФ. По содержанию металлов и коксуемости в соответствии с этой классификацией ТНО подразделяют на следующие группы  [c.119]

    Нефтяные остатки, особенно полученные при переработке тяжелых пефтей, могут содержать значительные количества асфальтенов и металлов. Важность переработки асфальтенов, вносящих основной вклад в содержание коксового остатка по Конрадсону, и удаления примесей металлов, особенно никеля и ванадия, постоянно возрастает в связи с необходимостью подготовки сырья для каталитического крекинга в кипящем слое пли гидрокрекинга. [c.86]

    Остаточное масло. Атмосферный остаток (343°С). По причинам, которые уже обсуждались, гидрообработка атмосферного остатка используется все шире, несмотря на большие каппталовложения и эксплуатационные затраты, которых она требует. Тольло путем гидрообработки остатков можно эффективно превращать высокомолекулярные асфальтены н порфирины, значительно снил<ая тем самым содержание коксового остатка по Конрадсону и загрязнение металлами и одновременно достигая максимального обессеривания. Таким образом прямая гнд-рообработка остатка не только обеспечивает достаточно низкий уровень содержания серы в топливе, но и дает облагороженное сырье для последующей переработки. При повышении жесткости условий можно достичь также значительных степеней гидрокрекинга в самом реакторе гидрообработки остатка. Преимущества такого облагораживания и повышенных степеней превращения будут обсуждаться в разд. 1У.Г. [c.98]

    Процесс газификации угля с агломерацией золы разработан совместно компанией Юнион Карбайд и Бательским научно-исследовательским институтом. Это другой тип процесса газификации в высокотемпературном псевдоожиженном слое без применения кислорода. Для его проведения используют специальные горелки, в которых коксовый остаток и зола окисляются компреосорным воздухом. Процесс испытан на пилотной установке производительностью 25 т/сут, которая эксплуатируется с конца 1974 г. Данный процесс вполне пригоден для переработки большинства битуминозных углей, поскольку в нем предусматривается стадия предварительной парокислородной обработки с целью понижения коксуюш,ейся способности углей. Свое название он получил благодаря способу, применяемому для покрытия дефицита тепла при протекании эндотермических реакций газификации в псевдоожиженном слое. Коксовый остаток выводится с верхней части высокотемпературного (около 980°С) псевдоожиженного слоя, а агломерированная зола, образующаяся в непривычно глубинных слоях реактора-газификатора, выпадает из него через коническое днище. Смесь коксового остатка и золы, получаемая с помощью компрессорного воздуха, вводится в специальную камеру сжигания, и подогретые почти до 1100°С агломерированные частички золы выносятся из горелки в псевдоожиженный рабочий слой реактора-газификатора. [c.167]

    Замедленное коксование. Процесс замедленного коксования (коксования в необогреваемых камерах) служит для получения из тяжелых остатков переработки нефти нефтяного кокса и широкой бензино-керосино-газойлевой фракции. Нагретое в печи сырье смесь исходного сырья с рециркулирующей тяжелой газойлевой оракцией) поступает в пустотелый цилиндр — коксовую камеру, продукты раопада исходного сырья отводятся сверху камеры на [c.125]


Смотреть страницы где упоминается термин Коксовый газ переработка: [c.155]    [c.264]    [c.17]    [c.59]    [c.60]    [c.66]    [c.96]    [c.432]    [c.117]    [c.30]    [c.75]    [c.124]    [c.69]    [c.82]    [c.99]   
Технология минеральных удобрений и кислот (1971) -- [ c.25 , c.143 , c.144 ]

Общая химическая технология Том 1 (1953) -- [ c.188 , c.269 ]




ПОИСК







© 2025 chem21.info Реклама на сайте