Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещества, определяемые методом кислотно-основного титрования

    Кислотно-основное титрование (иногда называется также методом нейтрализации). В качестве рабочих титрованных растворов (реактивов) применяют обычно кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и соли слабых оснований, а иногда также вещества, которые реагируют с такими солями. Если в растворе содержится несколько компонентов, имеющих различные кислотно-основные свойства, нередко возможно раздельное определение таких компонентов в их смеси. Применение неводных растворителей (спирт, ацетон и т. п.), в которых степень диссоциации кислот и оснований сильно изменяется, позволяет расширить число веществ, которые можно определять титрованием кислотами или основаниями. -% [c.272]


    В разделе о классификации методов химического анализа указывалось, что в основе титриметрических методов могут быть реакции самых различных типов кислотно-основные, окислительно-восстановительные, реакции осаждения или образования комплексных соединений. Тем не менее во всех этих случаях весьма существенно правильно определить так называемую точку эквивалентности, т. е. момент титрования, когда достигнуто эквивалентное отношение реагирующих компонентов —определяемого вещества и реагента. [c.114]

    Количественное содержание нитроксолина в препарате определяется методом кислотно-основного титрования в неводных средах. Препарат растворяют в муравьиной кислоте и титруют 0,1 н раствором хлорной кислоты до желтого окрашивания при индикаторе малахитовый зеленый (0,5% раствор в ледяной уксусной кислоте). В конце титрования прибавляют 5 капель индикатора Расчет ведут на сухое вещество. Для количественного определения нитроксолина в препарате можно применить нитритометрический метод после восстановления китрогруппы в аминогруппу. [c.320]

    Методами кислотно-основного титрования определяют концентрацию сильных и слабых кислот, сильных и слабых оснований, в том числе солей, которые рассматриваются как заряженные кислоты и основания. Возможно также определение веществ, не обладающих кислотно-основными свойствами, но вступающих в реакцию с кислотами или основаниями. Объектами анализа являются неорганические и органические оксиды и кислоты — азотная, серная, соляная, фтороводородная, фосфорная, уксусная, щавелевая, салициловая и другие, неорганические и органические основания — оксиды и гидроксиды щелочных и ще-лочно-земельных металлов, аммиак, амины, аминоспирты и т. д. Анализируются карбонаты, фосфаты, пирофосфаты, цианиды, сульфиды, бораты и соли многих других кислот. Содержание этих веществ обычно определяется методами прямого титрования, хотя в некоторых случаях используются методики обратного титрования и титрования по замещению. [c.212]

    Спирты и многие другие органические вещества могут быть определены методом кислотно-основного титрования по замещению. При анализе спирта ROH к пробе добавляют определенный объем раствора уксусного ангидрида (СНзСО)20 в пиридине или другом подходящем растворителе, в котором легко и быстро протекает реакция между спиртом и ангидридом  [c.216]


    Выбор метода. При оценке и выборе методов кислотно-основного титрования необходимо учитывать влияние растворителя не только на свойства определяемого вещества, но и на свойства продуктов взаимодействия титруемого соединения с реактивом. Условия кислотно-основного титрования определяются рядом факторов, которые можно разбить на три группы. [c.430]

    Какие из указанных веществ можно определить методом кислотно-основного титрования их водных растворов  [c.256]

    При этом выделяется одно и то же количество теплоты независимо от природы аниона кислоты или катиона основания. Если количества кислоты и основания эквивалентны, то в результате получается нейтральный раствор соли. Такие реакции называются реакциями нейтрализации. Они могут быть использованы для получения многих солей и лежат в основе аналитического определения количества кислоты или основания в растворе. Этот метод носит название кислотно-основного титрования. При титровании один раствор (титрант) небольшими порциями, обычно по каплям, добавляют к другому (титруемому) раствору. Точку эквивалентности, т. е. тот момент, когда количество титранта точно равно тому, которое необходимо для завершения реакции с веществом, находящемся в титруемом растворе, можно определять по изменению цвета индикатора, добавленного к раствору, или по изменениям других свойств растворов (см. разд. 34.7). [c.193]

    Как и в случае кислотно-основного титрования, эксперимент позволяет без труда определить форму кривой окислительно-восстановительного титрования и природу взаимодействующих веществ. При окислительно-восстановительном титровании также целесообразно оценить пригодность визуального индикатора при помощи потенциометрического метода. [c.360]

    Титриметрические методы анализа — это наиболее распространенные в фармацевтическом анализе методы, отличающиеся малой трудоемкостью и достаточно высокой точностью. Количественную оценку с их помощью осуществляют путем определения отдельных элементов или функциональных групп, содержащихся в молекуле лекарственного вещества. Многие органические вещества не могут быть определены титрованием в водных растворах в силу йх низкой растворимости или слабости проявляемых кислотно-основных свойств. Задача их определения была успешно разрешена заменой воды на органический (неводный) растворитель.  [c.140]

    Методами кислотно-основного титрования в неводных средах можно определять очень многие вещества, относящиеся к самым различным классам неорганических, органических и элементоорганических соединений. Особенно большое значение методы титрования в неводных растворах приобрели в связи с развитием химии и химической технологии высокомолекулярных соединений (пластмасс, эластомеров и лакокрасочных материалов). Многие мономерные и полимерные органические соединения не растворяются в воде, другие плохо растворимы в воде, образуют с водой стойкие нерасслаиваемые эмульсии или разлагаются водными растворами реагентов и поэтому не титруются в водной среде. Между тем методы титрования в неводных средах успешно используют для титрования таких соединений и определения различных функциональных групп в органических, элементоорганических и высокомолекулярных соединениях. [c.165]

    Титриметрические методы, основанные на кислотно-основных реакциях, включают прямое или косвенное титрование ионов водорода или гидроксила. Кислотно-основные методы широко используют в химическом анализе. В большинстве случаев растворителем служит вода следует принимать во внимание, что кислотный или основной характер растворенного вещества отчасти определяется природой растворителя, и поэтому замена воды иным растворителем позволяет проводить титрование в тех случаях, когда в водных растворах это невозможно. Титрование в неводных средах обсуждается в гл. 12. [c.264]

    Как уже было сказано, момент эквивалентности в методе нейтрализации определяется по pH раствора. В процессе титрования pH раствора изменяется и достигает расчетной величины, соответствующей точке эквивалентности. В объемном анализе для определения точки эквивалентности чаще всего применяют кислотно-основные индикаторы — вещества, которые меняют окраску в зависимости от pH раствора. [c.98]

    Наибольший практический и теоретический интерес представляют методы кислотно-основного титрования неводных растворов тех соединений, которые в этих растворителях проявляют кислые или основные свойства. Это обусловлено тем обстоятельством, что многие соединения, которые известны как нейтральные вещества, в неводных растворах проявляют кислые или основные свойства. Благодаря этому оказывается возможным определять методами кислотно-основного титрования подавляющее большинство соединений, которые не титруются в водных растворах. [c.5]


    При титровании содержание того или иного вещества определяют измерением количества реагента — называемого титрантом — стехиометри-чески взаимодействующего с этим веществом. Сам процесс титрования включает в себя тщательное измерение объема титранта, добавляемого к раствору определяемого вещества, и контроль полноты протекания реакции между этими двумя веществами. В классическом объемном анализе титрантом является раствор с точно известной концентрацией— стандартный раствор количество определяемого вещества рассчитывают, зная концентрацию и объем стандартного раствора, израсходованного при титровании. Для анализа растворов, содержащих кислые или основные компоненты, методом кислотно-основного титрования, необходимо иметь стандартные растворы кислот и оснований. [c.129]

    Определение конечной точки в кислотно-основном титровании обычно основывается на резком изменении pH, наблюдаемом вблизи точки эквивалентности. Интервал, внутри которого проис-ходит изменение pH, различен для разных случаев титрования и определяется природой и концентрацией как титруемого вещества, так и титранта. Для выбора подходящего индикатора и определения ошибки титрования требуется знать изменение pH в процессе титрования. Необходимо, таким образом, знать, как строятся кривые титрования в кислотно-основном методе. [c.210]

    Влияние различных растворителей на свойства растворенных электролитов используют при кислотно-основном титровании в неводных средах. Разработаны методы, позволяющие определять в неводных средах соли неорганических и органических кислот, анализировать их смеси, а также смеси солей с кислотами или основаниями. Разумеется, титрование в неводных растворах применяют для определения тех веществ, которые невозможно определять в водных растворах. [c.358]

    Кислотно-основное титрование (иногда называется также методом нейтрализации). В качестве рабочих титрованных растворов (реактивов) применяют обычно кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и соли слабых оснований, а иногда также вещества, которые реагируют с такими солями. Если в растворе содержится несколько компонентов, имеющих различные кислотно-основ- [c.267]

    Благодаря высокой чувствительности (10 % мае.) и возможности работы с сильноокрашенными веществами методы потенциометрического титрования полупили большое распространение в практике количествеяного группового анализа ГАС нефти. С помощью этих методов определяются как соединения с выраженными кислотными или основными свойствами (карбоновые кислоты [189], фенолы [190, 191], тиолы [192], азотистые основания [193, 194]), так и некоторые азот- и серусодержащие вещества нейтрального характера. [c.25]

    Поскольку число органических соединений, которые могут быть определены кислотно-основными методами, велико, в этой главе обсуждаются некоторые, наиболее важные, принципы этих методов. Кроме того, обсуждаются методы, используемые для прямого титрования кислых и основных веществ. Многие из прямых кислотно-основных методов ценны также для конечных определений в косвенных кислотно-основных методах, как показано в следующих главах этой книги. [c.13]

    Из титриметрических методов анализа о кислительно-воостановитель-ные, обычно называемые редокс методами, вероятно, являются наиболее широко распростра неняыади. Хотя кислотно-основные, осадительные и комплексометрические методы титрования имеют большое при-М енение, многие вещества невозможно удовлетворительно определить с 1ИХ помощью. Границы применимости редокс методов гораздо шире к тому же следует подчеркнуть то особое значение, которое придается этим методам в связи с большим объемом научных исследований в области электроаналитической химии. [c.266]

    Исчерпывающее изучение иодометрических методов [3] привело к выводу, чго в точных условиях субмикроанализа они мало применимы. При исследовании некоторых методов кислотно-основного титрования лучшие результаты были получены при алкалиметрн-ческом определении муравьиной кислоты с метиловым красным в качестве индикатора. Кислый перйодат в этих условиях не мешает определению при использовании индикатора с более высокой областью pH кислый перйодат также титруется. Опыты со стандартными растворами, содержащими муравьиную кислоту и перйодат, и последующие опыты, в которых стандартным веществом был маннит, показали, что оба компонента можно успешно определить в одном и том же растворе. [c.186]

    Таким образом, методом кислотио-осиовного титрования могут быть определены многие неорганические и органические вещества различных классов. При использовании неводных растворителей возможности метода кислотно-основ-иого титрования значительно расщиряются. Поэтому метод кислотно-основного титрования щироко используют в аналитической практике. [c.240]

    В настоящее время достигнуты большие успехи в области анализа органических соединений в неводных растворах. Достаточно указать, что только методом кислотно-основного титрования в неводных средах можно определять соединения, независимо от их значений рК в водных растворах, изомеры, химические соединения одного и того же гомологического ряда, вещества, не имеющие ничего общего с обычными кислотами и основанпями, многоком- [c.291]

    Комбинация ацидиметрического метода с реакцией раскрытия цикла кислотой [2], предложенная для определения этиленимина в продуктах его полимеризации, осуществляется как непрямое кислотно-основное титрование. Для определения содержания мономерного этиленимина навеску вещества кипятят с раствором NaBr в 1 N НС1 и избыток кислоты определяют обратным оттитровыванием щелочью. При этом кроме образования гидрохлоридов всеми основными группировками смеси, мономерный этиленимин связывает дополнительно одну молекулу НВг (NaBr -f H l) с образованием 2-бромэт-иламина  [c.155]

    Термометрическое титрование в неводных средах имеет явное преимущество в сравнении с титрованием в водных растворах, так как все неводные системы имеют более низкую удельную теплоемкость, чем соответствующие водные системы. Следовательно, одна и та же реакция с определенным изменением свободной энергии, одинаковым тепловым эффектом, вызовет большее температурное изменение в неводной среде, так как (удельная теплоемкость среды) X (масса среды) X 7 -Более значительное изменение температуры в неводной среде повышает чувствительность метода. Таким образом, многие реакции, имеющие маленькие мольные теплоты, могут в неводной системе вызвать достаточное изменение температуры для получения приемлемых энтальпограмм, позволяющих производить анализ с удовлетворительной точностью. Многие вещества, имеющие недостаточную основность или кислотность в водном растворе, что не позволяет получать удовлетворительные конечные точки титрования, могут успешно титроваться в растворителях, способных повысить основные или кислотные свойства вещества. Кроме того, можно в смеси кислотных или основных материалов различной силы определять ее индивидуальные составные части титрованием растворов этих смесей в таких растворителях, которые не имеют нивелирующего действия. [c.96]

    Предлагаемая вниманию читателей книга Альберта и Сер-жента отнюдь не является учебником, хотя научный работник, впервые начинающий работу в области кислотно-основных свойств органических и неорганических соединений, может почерпнуть из нее множество полезных советов и указаний по теории и практике определения констант ионизации, а также их значения для характеристики, индивидуализации и реакционной способности химических веществ. Книга эта — по существу справочник, правда небольшого объема, содержащий величины констант ионизации свыше 400 важнейших неорганических и органических соединений. Эти константы определены современными методами достаточной степени точности. Для того чтобы читателю было яснее, каким путем достигнута эта точность, справочный материал расположен до описания методов изучения кислотно-основных свойств. Описаны методы и их аппаратурное оформление, основанные на спектрофотометрии, потенциометрическом титровании, кондуктометрии и т. д. К сожалению, здесь отсутствует метод кинетических измерений, в последнее время получивший некоторое распространение. [c.3]

    При автолизе под влиянием присутствующих в клетках протеолитических ферментов происходит расщепление клеточных белков на полипептиды и аминокислоты и в автолизате увеличивается количество свободных карбоксильных и аминных групп. Полипептиды и аминокислоты являются ам-фотерными веществами. В водном растворе они способны диссоциировать как кислоты и как основания, поэтому определить количество кислотных или основных групп методом титрования можно только в том случае, если одна из них будет блокирована. Принцип метода формолового титрования основан на том, что прибавлением избытка формальдегида блокируют аминогруппы, а количество свободных карбоксильных групп определяют титрованием щелочью. Реакции протекают по следующим уравнениям  [c.287]

    Анионные СПАВ определяют также титрованием катионными и, наоборот, катионные СПАВ титруют анионными. Точку эквивалентности фиксируют различными способами по максимуму мутности, по минимуму поверхностного натяжения, с помощью кислотно-основного индикатора, в нрисутствии органического растворителя — метод двухфазного титрования, который будет описан ниже. В осадительном титровании [6] додецилбензолсульфоната натрия раствором зефирамина точку эквивалентности определяют сталагмометрически, оценивая поверхностное натяжение между поверхностью капли ртути и титруемым раствором по времени падения капли ртути через раствор. Для определения концентрации СПАВ строят график в координатах время падения капли — объем добавленного раствора титранта. Точку, соответствующую максимальному времени падения капли (максимальному поверхностному натяжению, т. е. минимальной концентрации поверхностно-активного вещества), принимают за конец титрования. [c.234]

    Растворенную МХК в маточном растворе определяли с помощью распределительной колоночной хроматографии на силикагеле, пропитанном 0,25н соляной кислотой, при полуградиентном элюировании бензолом с эфиром при обнаружении продукта в пробах тонкослойной хроматографией с последующим взвешиванием основного вещества (2). Содержание органических кислот в маточном растворе в пересчете на муравьиную мислоту (S НСООН ) определяли по разности ионов водорода (из общей кислотности — S НС1 и хлористого водорода), полученной при титровании анализируемой пробы точно 0,1н растворами едкого натра и азотнокислой ртути меркурцметричесмим методом. [c.78]


Смотреть страницы где упоминается термин Вещества, определяемые методом кислотно-основного титрования: [c.258]    [c.208]    [c.198]    [c.138]    [c.254]    [c.250]    [c.496]    [c.256]    [c.52]    [c.381]    [c.405]   
Смотреть главы в:

Аналитическая химия -> Вещества, определяемые методом кислотно-основного титрования




ПОИСК





Смотрите так же термины и статьи:

Кислотно-основное

Кислотно-основное титровани

ЛИЗ кислотно основной

Метод веществам

Метод кислотно-основной

Титрование в основности

Титрование кислотно-основное

Титрование методами



© 2024 chem21.info Реклама на сайте