Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак вязкость

    Подобно воде, жидкий аммиак сильно ассоциирован, главным образом за счет образования водородных связей. Однако они в данном случае сравнительно слабы (энергия связи порядка 1 ккал/моль). Вязкость жидкого аммиака почти в семь раз меньше вязкости воды. Его плотность (0,68 и 0,61 г/см соответственно при —33 и [c.390]

    Здесь а — поверхностное натяжение жидкости, г — скрытая теплота испарения, — коэффициенты динамической и кинематической вязкости. Чем больше число тем эффективнее теплоноситель. Поскольку параметры, входящие в N , по-разному зависят от температуры, то функция N (7) имеет минимум, отвечающий наивыгоднейшему температурному диапазону работы термосифона. Однако эта величина не полностью характеризует теплоноситель и лишь отражает его свойства в жидком состоянии. По этому числу предпочтение следует отдать дистиллированной воде (ее скрытая теплота испарения велика 2400 кДж/кг). Однако при минусовых температурах вода замерзает. Для исключения замерзания составляется смесь воды со спиртом в процентном отношении. Аммиак обладает большим (сильно нарастающим с повышением температуры) избыточным давлением и плотностью паров теплоносителя в заданном температурном диапазоне, хотя уступает воде по значению скрытой теплоты испарения (ниже в 2 раза, чем у воды). Но аммиак токсичен, и требуется особая осторожность при заправке. Подходящим теплоносителем для термосифонов является и ацетон, но он в =5 раз уступает воде по параметру качества. [c.246]


    Большинство цветных металлов (медь, бронза, латунь и другие сплавы) подвергаются значительной коррозии при воздействии аммиака. Относительно стойки сталь, чугун, алюминий, никель и титан. Углеродистая сталь практически не корродирует при контакте со сжиженным аммиаком, поэтому из нее изготавливают трубопроводы и резервуары для перекачивания и хранения аммиака. Длительные испытания на двигателе FR показали, что при работе на аммиаке повышенный износ наблюдается лишь у деталей, изготовленных из цветных металлов, особенно из меди и ее сплавов. Из прокладочных материалов стойкими к аммиаку являются фторопласты и некоторые сорта резины. Большинство нефтяных и синтетических масел практически не изменяют свои свойства при работе двигателя на аммиаке. При этом отмечены лишь незначительные колебания вязкости и некоторое снижение эффективности антиокислительных присадок. [c.190]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]

    Сразу начинается экзотермическая реакция полимеризации выделяющееся тепло отводят при помощи трубного пучка, охлаждаемого аммиаком. Вязкость и молекулярный вес получаемого полимера определяются, главным образом, температурой проЦес- [c.144]


    При выборе масел для смазки цилиндров нужно учитывать давление, но руководствоваться главным образом температурами нагнетания. Для воздуха, водорода, азота, углекислого газа, окиси углерода, коксового газа и аммиака рекомендуемая кинематическая вязкость масла в зависимости от температуры нагнетания равна  [c.455]

    П р и м еча н и е. После загрузки агорой порции смеси формалина и аммиака вязкость определяется часто. [c.100]

    Б качестве растворителя-разбавителя применяют обычно бен-, зиновую фракцию парафинистых нефтей плотностью 0,724— 0,727, кипящую в пределах 75—135° (нафта). Б более совершенных вариантах этого процесса в качестве растворителя используют технический гептан или гексан, которые обладают меньшей растворяющей способностью в отношении парафинов и дают более низкую вязкость рабочего раствора. Перед смешением сырье нагревают до такой степени, чтобы температура раствора в сборном резервуаре была 50—60°. Иногда смесь сырья с растворителем пропускают перед смесителем через однопоточный (т. е. типа труба в трубе ) подогреватель. Далее раствор сырья направляют для охлаждения и кристаллизации в кристаллизационные башни, которые представляют вертикальные сосуды, оборудованные внутри вертикальными охлаждающими змеевиками. В первых по ходу раствора башнях раствор для экономии холода охлаждают депарафинированным продуктом, отходящим из центрифуг на регенерацию. В последних башнях охлаждение ведут испарением жидкого аммиака в змеевиках. [c.175]

    Имеющиеся в литературе данные по непосредственному определению влияния вязкости жидкости на коэффициент массопередачи довольно противоречивы [146, 268, 423]. Однако можно считать экспериментально установленным, что вязкость влияет на Ку [146, 268, 280] (рис. III.8) и не влияет на Кг [7, 420]. Кроме того, установлено [234], что высокая турбулентность пенного слоя в значительной мере маскирует влияние вязкости жидкости на скорость процессов массопередачи и при 2,5—3 м/с это влияние сводится к минимуму. Однако при Wr <С 2 м/с оно становится ощутимым. Для изучения влияния вязкости жидкости на коэффициент массопередачи при пенном режиме авторами проведена изотермическая десорбция двуокиси углерода и аммиака из воды и водно-глицериновых растворов с концентрацией глицерина от О до 50% (вязкость [c.135]

    Пример 8. Определить длину и диаметр труб реакционного трубчатого аппарата, предназначенного для проведения проиесса аминирования л-нитро-хлорбензола водным раствором аммиака. (Суточный объем перерабатываемой эмульсии У(.-К) м , продолжительность процесса т--20 мин. Характер движения жидкости в трубах должен быть турбулентным. Удельный вес эмульсии Т=1 г/сж , вязкость и.= сантипуаз. [c.457]

    Щелочные растворы индикатора чувствительны к действию окислителей, поэтому индикатор добавляют непосредственно перед титрованием и вводят в раствор небольшое количество аскорбиновой кислоты или гидроксиламина. Поскольку водные растворы эриохрома Т неустойчивы, обычно его в сухом виде смешивают с хлоридом натрия (для разбавления). Для этой же цели добавляют раствор триэтаноламина, разбавленный для снижения вязкости небольшим количеством абсолютного спирта или концентрированным аммиаком. [c.186]

    Повышение вязкости растворов высокомолекулярных веществ при введении в них различных добавок объясняется либо увеличением взаимодействия макромолекул друг с другом в результате освобождения под влиянием примесей активных мест на молекулярных цепях, либо образованием химических связей между молекулами полимера и примесей (действие окислов металлов, альдегидов). Понижение вязкости.также можно объяснить двумя причинами либо деструкцией макромолекул под влиянием примесей (действие аммиака, альдегидов, кислот и т. д.), либо уменьшением взаимодействия цепей друг с другом в результате взаимодействия примесей с активными группами макромолекулы. [c.465]

    Вязкость является одним из характерных свойств латекса. Она зависит от содержания каучука и растет с увеличением содержания последнего в латексе. Особенно резкое повыщение вязкости происходит при концентрациях каучука в латексе выше 50%. При концентрации 65—75% латекс представляет собой пасту. Аммиак, добавляемый к латексу для стабилизации, сильно понижает его вязкость. Понижение вязкости при добавке аммиака связано с влиянием щелочности на сольватацию и растворимость защитных веществ (белков и др.), образующих адсорбционную оболочку глобул. [c.25]

    Низкие вязкость (1/4 вязкости воды) и плотность жидкого аммиака обусловливают подвижность ионов в нем и легкость проведения химических реакций, в том числе гетерогенных, в которых ведущую роль играют процессы диффузии растворенных соединений. Высокое значение дипольного момента облегчает химическое взаимодействие между полярными молекулами аммиака и ионами, а также между самими молекулами аммиака. Диэлектрическая проницаемость аммиака значительно меньше, чем диэлектрическая проницаемость воды (е = 78,5), однако она гораздо больше, чем диэлектрическая проницаемость уксусной кислоты ( = 6,4). Поэтому естественно ожидать, что значения растворимости ионных солей [c.167]


    Вязкость аммиака при атмосферном давлении 161] — см. также рие. 27 [c.65]

    Продукт 308 получают поликонденсацией диметилольных производных крезола (крезолдиалкоголя) со сложным эфиром (глицеридом)—продуктом взаимодействия льняного масла, глицерина и канифоли. Поликонденсацию осуществляют в среде бу-таиола. Отгоняют его совместно с конденсационной водой до получения определенной вязкости раствора смолы в толуоле. Крезолдиалкоголь получают, нагревая формальдегид и трикре-зол при 60—65° С в присутствии аммиака. Реакционную смесь обезвоживают при 50—55° С под вакуумом. Другой промежуточный продукт получают, нагревая смесь льняного масла, глицерина и канифоли при 250—260° С 12 ч. [c.209]

    Итак вязкость аммиака при 20° на границе насыщения будет равна г 2о=1,3 10 кг-сек м . По Витте мы получили бы т 2о= 1.34 10 . [c.26]

    Меньшая динамическая вязкость паров а" у аммиака способствует [c.18]

    Колонна синтеза работает под давлением 30 МПа с вторичной конденсацией аммиака. Соотношение Нг N2 в исходной азотоводородной смеси близко к стехиометрическому. Содержание инертных примесей ( H4-fAr) в газе Син = 0,96% (об.). Динамический коэффициент вязкости газовой смеси при 30 МПа Рг 3,0-10 Па-с. Данные материального баланса колонны синтеза для этих исходных условий приведены без расчета в следующей таблице  [c.145]

    Аммиак может оказаться полезным и в одной из последующих операций приготовления катализатора из глин — при подготовке пульпы к распылению. В настоящее время для обеспечения текучести и прокачиваемости пульпы рекомендуется, чтобы ее влажность достигала 75% (ппп). При этом на каждую тонну сухого вещества в сушильной колонне должно испариться примерно 2,5 т воды. Тепловую мощность и размеры сушилки можно было бы уменьшить, достигнув текучести глины при более низкой влажности. Общеизвестно [13] разжижающее действие на пасты и пульпы глины небольших добавок щелочных соединений, используемое, в частности, в керамической промышленности. Попытка применить это явление к пасте активированной глины, предпринятая в ГрозНИИ, показала, что при добавке аммиачной воды из расчета 1% NH3 на сухое вещество глины вязкость пасты, имеющей влажность (ппп) 65%, снижается до уровня вязкости пульпы с влажностью 75%, т. е. до 70—90 пуаз. Если удастся распылять такую насту без ухудшения свойств катализатора, то тем самым количество испаряемой воды будет снижено до 1,5 т/т сухого вещества, а тепловая мощность сушилки уменьшится на 40%. [c.95]

    Практический режим нейтрализации должен быть таким, чтобы образую[цаяся в смесителях (нейтрализаторах) пульпа обладала достаточной подвижностью. Вязкая пульпа трудно перекачивается насосами и плохо поглощает аммиак. Вязкость аммофоспой пульпы зависит прежде всего от концентрации исходной фосфорной кислоты, а также от растворимости фосфатов аммония, температуры и других факторов. Графический анализ процесса нейтрализации в системе КИу— РО —Н2О позволяет подобрать оптимальный режим. процесса, при котором образуется текучая пульпа с небольшим содержанием твердой фазы. [c.310]

    Содержание, % сухого вещества. . . каучука. ...... щелочи (в пересчете на аммиак)..... Вязкость по Брукфилду, тн-сек/м , или спа Поверхностное натяжение, мн1м, или дин/см. ....... 37--41 35-38 0,8-1, 0 4-6 33-36 11-13 62-65 58-63 0,6-0,8 30-60 33-40 10-11 72-75 65-69 9500 33-35 10-11 61-62 60-61 0,5-0,7 30-50 35-42 10,2-10,8 [c.18]

    При одинаковой холодопроизводительности размеры цилиндров с )реоновых компрессоров больше, чем цилиндры аммиачных, так как объемная холодопроизводительность фреона-12 примерно в 1,6 раза меньше, чем у аммиака, вязкость его тоже выше. Это вызывает значительные сопротивления в клапанах и трубопроводах фреоновых машин. Поэтому проходные отверстия клапанов и диаметры трубопроводов во фреоновых компрессорах больше, чем в аммиачных. [c.41]

    Уголь с нанесенным на него катализатором поступает в систему приготовления пасты. В качестве пастообразователя используют угольный дистиллят с температурой кипения 300— 400°С, который предварительно гидрируется под давлением 10 МПа на отдельной стадии. Для нормального ведения процесса паста приготавливается при равном соотношении угля и растворителя при большем содержании угля затрудняется транспорт пасты в системе вследствие ее высокой вязкости. Углемасляная паста, в которую вводится газообразный водород, предварительно нагревается в трубчатой печи и поступает в систему пустотелых необогреваемых реакторов с объемной скоростью 1,0—1,5 ч . За время пребывания пасты в реакторе (30—60 мин) протекают реакции гидрогенизации угля с образованием углеводородных газов С1—С4, аммиака, сероводорода и оксидов углерода [до 10% (масс.)], воды [3—5% масс.)] и жидких продуктов [80—90% (масс.)]. Так как процесс протекает с выделением тепла, для регулирования температуры в реакторы подается холодный водородсодержащий газ он служит также перемешивающим агентом. [c.83]

    При депарафинизации дизельного топлива изменяются все его основные показатели. 3. В. Басырова [177] на примере дизельного топлива туймазинской нефти показала, что с увеличением глубины депарафинизации дизельного топлива, характеризуемой температурой застывания, возрастают плотность, показатель преломления, кинематическая вязкость, содержание серы и коксовое число, а кислотное и цетаповое числа снижаются. Возрастание плотности, показателя преломления и вязкости объясняется удалением к-парафииов, для которых эти показатели соответственно ниже, чем у исходного дизельного топлива. Увеличение же содержания серы объясняется тем, что сера входит в состав циклических соединений, не образующих комплекса. Снижение кислотности можно объяснить, во-первых, адсорбцией нафтеновых кислот на поверхности комплекса, а во-вторых, нейтрализацией кислот аммиаком, выделяющимся в процессе гидролиза карбамида. [c.111]

    Способность к ассоциации проявляют аммиак, спирты, пероксид водорода, гидразин, серная кислота и многие другие вещества. Многие физические свойства веществ с водородной связью вьшад 1ют из общего хода их изменения в ряду аналогов. Так, летучесть ассоциированных жидкостей аномально мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышены. Ассоциация приводит к изменению растворяющей способности. Часто возможность растворения вещества связывают с его способностью образовывать водородные связи. [c.102]

    Сырая заготовка превращается в спеченную массу прежде, чем температура достигнет 80°С вода, содержащаяся в резоле и образующаяся в процессе конденсации, испаряется при подъеме температуры до 100°С в этом же температурном интервале начинается сшивание резольной смолы. Прн температуре около 115°С начинается деструкция ГМТА со значительным выделением аммиака. С целью образования однородного расплава и создания благоприятных условий для выделения летучих компонентов при 80— 100°С дают более продолжительную выдержку. Прн быстром подъеме температуры до 100°С газообразные продукты способствуют образованию мелкопористой структуры в связующем, что умень-нтет прочность изделия. Еще одну выде 1жку делают ири 120— 130°С с тем, чтобы выделился аммиак. Па твердость и ударную вязкость связующего может влиять и конечная температура процесса, которая пе должна превышать 180 °С. По окончании термообработки круги медленно остывают в печи до 50—60°С при циркуляции воздуха. Такими мерами предотвращают деформацию и образование трещин в абразивных кругах. [c.232]

    В каждом конкретном случае применяют смолы различных вязкости и реакционной способности. Для снижения вязкости допускается введение небольших количеств спиртов в жидкие фенольные и крезолоформальдегидные смолы, полученные в присутствии едкого иатра или аммиака. Новолачные фенольные смолы, которые можно модифицировать бутадиеннитрильным каучуком, растворяются в смеси ацетона, уайт-спнрита п толуола этот раствор должен содержать ГМТА. [c.244]

    Реагент И-1-А — сложная композиция полиалкилпириди-нов, получаемых конденсацией паральдегида с аммиаком на базе отходов производства синтетического каучука. Вязкая темно-коричневая жидкость с характерным запахом пиридинов с плотностью 1,01—1,03 г/см и вязкостью при 20 °С около 560 мПа-с. Температура застывания —5°С, вспышки 114°С, самовоспламенения 375 °С. Хорошо растворим в органических растворителях (спиртах, ацетоне, кетонах), в сильных минеральных кислотах (соляной, серной и т. п.), частично в нефти, плохо — в бензине нерастворим в воде. Реагент относится к малотоксичным продуктам без канцерогенного действия. [c.24]

    Тем не менее, значительная термостойкость гипана, обусловленная прочностью связей углерод — углерод в главных цепях, ограничена термостойкостью боковых групп, особенно амидных. При 175° С становится заметной их термическая деструкция и переход в имиды, сопровождающийся выделением аммиака и образованием трехмерных структур [87]. При более высоких температурах и более длительных или многократных термообработках накапливаются изменения, связанные с деструкцией макромолекул и усилением гидролиза. Термообработка водных растворов гипана снижает вязкость их в 2—4 раза, что соответствует уменьшению молекулярного веса и стабилизирующего действия. В этих условиях активизируется также гидролитическое влияние свободной щелочи, 2—4% которой находится в реагенте. Возрастание содержания акрилата натрия, обладающего, как указывалось невысокой стабилизирующеи способностью, не улучшает защитные свойства реагента, особенно при минерализации. Поэтому повышение температуры требует более частых обработок соленых буровых растворов или комбинирования гипана с другими реагентами. В пресных условиях термодеструкция гипана протекает довольно медленно. Как показали наши опыты, гипан успешно снижает водоотдачу пресных растворов даже при нагревании до 250° С. [c.194]

    Данные об аммиаке были взяты у Б. Коха (см. выще), за иск.тю-чением теплопроводности, которая была заимствована из работы Дж. М. Ленуара [Л. 306]. Дополнительные данные для водорода были получены у Кинана и Кэйя (газовые таблицы) и у Дж. М. Ленуара [Л. 307]. Опять, за исключением области критического состояния, данные о свойствах при других давлениях можно получить следующим образом. Плотность можно определить по уравнению состояния газа р =р1 Т. Из этого следует, что при любой температуре плотность р = р (р/ро), где ро=1,0 и р — плотность, приведенная в табл. П-4 для рассматриваемой температуры. Кроме того, удельная теплоемкость Ср изменяется очень мало с изменением давления в широких пределах. Такая независимость от давления справедлива также для теплопроводности Я, динамической вязкости [х и, следовательно, для критерия Прандтля Рг. Кинематическая вязкость V и коэффициент температуропроводности а обратно пропорциональны плотности  [c.603]

    Особенность работы масел данной группы постоянный контакт с холодильным агентом (фреон, аммиак, углекислота), циклическое изменение температуры и давления среды. Основные требования, которым должны удовлетворять эти масла не вступать в реакщ1ю с холодильным агентом, иметь возможно более низкую температуру застывания и меньше увеличивать вязкость при понижении температуры, не вызьшать коррозию цветных металлов. Масла для холодильных машин должны обладать высокой стабильностью и работать весь период эксплуатации без замены, т. к. в герметичных, часто неразборных узлах компрессоров невозможны смены и наблюдение за изменением его свойств. Чаще всего это маловязкие глубокоочищенные масла, к которым добавлены ингибиторы окисления и присадки, понижаюшле температуру застывания. [c.233]

    Через 1—2 час катализатор дезактивируется или его дезактивируют, добавляя 10 м/г охлажденной до —70° смеси (4 1) метанола и 28%-ного раствора аммиака, содержащего 0,5% антиоксиданта (п-окси-Ы-фенилморфолин или тимол). Смесь тщательно перемешивают, затем вынимают колбу из б ни и постепенно повышают температуру, следя за испарением пропана. Следует принять меры предосторожности — работать в вытяжном шкафу или на открытом воздухе. Метанола добавляют столько, чтобы покрыть полимерную массу, и смесь оставляют стоять на ночь для полного удаления остатка катализатора и для того, чтобы полимер пропитался антиоксидантом. Полимер дважды промывают 100 мл метанола и сушат до постоянного веса при температуре 50° в вытяжном сушильном шкафу. В зависимости от чистоты мономера, температуры и характера взаимодействия с катализатором полученный поливинилизобутиловыйэфир имеет вязкость г]уц/с в пределах 1—8 (растворы 0,10 г на 100 мл бензола при 25°) (примечания 5, 6). Выход от 80% до почти количественного. Пленки, полученные из расплава этого относительно кристаллического изотактического поливинилизобутилового эфира, не липкие, способны к холодной вытяжке, и температурный интервал плавления кристаллов, определенный по двулучепреломлению, составляет 90—120°. Кристалличность формованных пленок как в растянутом, [c.36]

    При вальцевании композиция смешивается, наполнитель пропитывается связующим, в массе которого продолжается дополнительная конденсация с выделением воды и увеличением молекулярного веса полимера и его вязкости. Считают, что при вальцевании происходит образование резитола и испарение части летучих — воды, формальдегида, фенола и аммиака. Лист, снятый с вальцев, дробят и измельчают до порошкообразного состояния. Перед прессованием пресспорошки табле-тируют для уменьшения удельного объема, повышения теплопроводности массы и увеличения производительности пресса. Таблеточные машины могут быть карусельные или эксцентриковые. Перед прессованием таблетки подогревают действием токов высокой частоты ли в термошкафах. [c.28]


Смотреть страницы где упоминается термин Аммиак вязкость: [c.23]    [c.88]    [c.168]    [c.86]    [c.136]    [c.246]    [c.242]    [c.21]    [c.428]    [c.314]    [c.220]    [c.236]   
Справочник азотчика Том 1 (1967) -- [ c.47 ]

Производство хлора и каустической соды (1966) -- [ c.267 ]

Технология связанного азота Издание 2 (1974) -- [ c.446 ]

Справочник азотчика Издание 2 (1986) -- [ c.36 , c.37 ]

Технология азотной кислоты Издание 3 (1970) -- [ c.478 ]

Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.418 ]

Технология азотной кислоты (1962) -- [ c.512 ]

Техника лабораторной работы в органической химии Издание 3 (1973) -- [ c.311 ]

Инженерный справочник по технологии неорганических веществ Графики и номограммы Издание 2 (1975) -- [ c.50 ]

Справочник азотчика Т 1 (1967) -- [ c.47 ]

Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.112 , c.120 , c.122 ]

Справочник по разделению газовых смесей (1953) -- [ c.105 ]

Справочник химика Издание 2 Том 1 1963 (1963) -- [ c.1002 , c.1005 ]

Справочник химика Том 1 Издание 2 1962 (1962) -- [ c.1002 , c.1005 ]

Справочник химика Том 1 Издание 2 1966 (1966) -- [ c.1002 , c.1005 ]

Справочник химика Изд.2 Том 1 (1962) -- [ c.1002 , c.1005 ]




ПОИСК







© 2024 chem21.info Реклама на сайте