Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение жидких топлив из угля

    Известно несколько способов получения жидкого топлива из бурого угля. По одному из них бурый уголь подвергают сухой перегонке при температуре 400—500 °С образовавшаяся каменноугольная смола содержит смесь углеводородов, по свойствам близкую к бензинам. По другому способу измельченный уголь, смешанный [c.46]

    Виды топлива. Топливо бывает твердое, жидкое и газообразное. К твердым видам относятся ископаемые угли, которые, в основном, подразделяются на три главные категории антрацит (содержит около 95% С), каменный уголь(около 80% С) и бурый уголь (около 65% С). К твердым видам топлива относятся также кокс, торф и дрова. Кок с—искусственный продукт, получаемый при прокаливании без доступа воздуха некоторых видов каменного угля. Торф образуется в огромных количествах из отмирающих болотных растений. Основным недостатком торфа как топлива является его невысокая теплотворная способность и большая зольность (около 10%). В настоящее время торф применяют также для получения газообразного топлива и аммиака, а также как удобрение. [c.282]


    На рис. 1.4—1.6 изображены три схемы потоков современных НПЗ. Заводы с неглубокой переработкой нефти по топливному варианту (рис. 1.4) до недавнего времени строились в тех районах, где отсутствуют другие источники органического топлива (уголь, природный газ), а для снабжения энергетических установок используется остаток от перегонки нефти — мазут. Из нефти выделяют изначально содержащиеся в ней светлые дистиллятные фракции, которые затем облагораживают с применением вторичных процессов — каталитического риформинга, изомеризации, гидроочистки. В схеме завода предусмотрено также получение жидкого парафина — сырья для биохимических производств и битума. [c.16]

    Альтернативные топлива. Непрерывный рост потребности в жидких топливах и ограниченность ресурсов нефти обусловливают необходимость поисков новых видов топлив, получаемых из ненефтяного сырья. В качестве источника получения такого топлива в первую очередь рассматривают уголь, запасы которого в мире превосходят запасы нефти и газа. При переработке угля можно получить жидкие продукты, содержащие углеводороды и неуглеводородные примеси. Наиболее прогрессивны методы термической обработки угля в атмосфере водорода в присутствии катализаторов. Из получающейся при этом смеси широкого фракционного состава могут быть получены бензин и дизельное топливо. [c.30]

    Уголь - адсорбент, для получения жидкого топлива, карбида кальция, черной краски [c.127]

    Существует общее мнение, что уже в конце нашего столетия важное место в энергоснабжении займут синтетические виды топлива. Одним из них будет заменитель природного газа, которому и посвящается настоящая книга. К другим видам синтетического топлива относятся газы с более низкой теплотой сгорания, которые можно получать описанными в данной работе методами, и целый ря 1 жидких продуктов. Они будут дополнять, а в конечном счете и заменять природный газ и обычную сырую нефть как топливо и как сырье. Основным сырьевым материалом для получения синтетического топлива будет уголь, начиная от лигнитов и кончая каменными углями, поскольку его запасы огромны. Значительная роль отводится и таким ресурсам, как нефтеносные сланцы, битуминозные песчаники и тяжелая нефть. [c.5]


    Известно несколько способов получения жидкого топлива из твердого топлива. По одному из них сланцы подвергают сухой перегонке при температуре 400—500°С. Образующаяся смола содержит смесь углеводородов, по свойствам близкую к нефтям. По другому способу измельченный каменный уголь, смешанный со смолой и катализатором, гидрируют под давлением при той же температуре. [c.44]

    Получение тепловой энергии от сжигания топлива. Основным источником тепловой энергии для печей является топливо. Топливом называется вещество, которое при нагревании в присутствии кислорода активно окисляется (сгорает) с выделением значительного количества тепла. Наибольшее значение для промышленных печей имеет углеродистое топливо. Углеродистое топливо бывает твердое, жидкое и газообразное. По происхождению топливо подразделяется на природное и искусственное. Основные разновидности топлива — уголь, нефть и природный газ. [c.13]

    Уголь расходуется преимущественно как энергетическое топливо. Однако значительная его часть подвергается термической обработке с целью получения доменного кокса или литейного бездымного топлива. Попутно с коксом образуются жидкие и газообразные химические продукты большой ценности. Часть низкокачественных углей, в том числе бурых, и сланцев подвергается термической обработке с целью получения жидких и газообразных химических продуктов. [c.6]

    Могут возразить, что последняя цель достижима и другими способами, например при очистке твердого (жидкого) топлива или дымовых газов. Более того, во избежание загрязнения не обязательно газифицировать уголь с целью получения только ЗПГ в этом отношении приемлемым мог бы быть любой другой газ. Однако нам кажется (и эта точка зрения подтверждается большим числом проектов, находящихся в стадии планирования), что метод получения ЗПГ не сложнее других систем газификации и что ЗПГ будет применяться как дополнительное или заменяющее природный газ топливо и по чисто экологическим причинам. [c.20]

    В модифицированном варианте процесса SR -H, схема которого приведена на рис. 3.2, за счет повышения давления до 14 МПа и увеличения времени пребывания угольной пасты в реакционной зоне в качестве главного целевого продукта получают жидкое топливо широкого фракционного состава [79]. Исходный уголь после измельчения и сушки смешивается с горячей угольной суспензией. Полученную пасту вместе с водородом пропускают через нагреватель с огневым обогревом и затем направляют в реактор. Требуемые температура и парциальное давление водорода поддерживаются подачей в несколько точек реактора холодного водорода. Продукты реакции вначале разделяются в газосепараторах. Выделенный из жидких продуктов газ, содержащий преимущественно (I ступень) водород и газообразные углеводороды с примесью сероводорода и диоксида углерода, после охлаждения до 38°С направляется в систему очистки от кислых газов. На криогенной установке выделяются газообразные углеводороды Сз—С4 и очищенный водород (он возвращается в процесс). Оставшаяся метановая фракция после метанирования содержащегося в ней оксида углерода подается в топливную сеть. Жидкие про- [c.75]

    Широкое использование горючих веществ органического происхождения объясняется тем, что запасы их достаточно велики и доступны для добычи, при горении они выделяют много тепла, продукты их сгорания не действуют губительно на животных и растения. Так как эти горючие вещества большей частью сжигают для получения тепловой энергии, они получили название топлив. Наиболее распространены в природе твердые топлива — уголь, сланцы, торф и древесина. Жидкие и газообразные топлива — нефть и природные горючие газы — распространены значительно меньше. [c.9]

    Лапидус А. Л., Крылова А. Ю. Уголь и природный газ — источники для получения искусственного жидкого топлива и химических продуктов. [c.383]

    Наиболее универсальным способом получения искусственного жидкого топлива является превращение углеводородного газа и твердых углеводородных материалов (уголь, сланец, древесины, городские отходы) в синтез-газ и затем в спирты. [c.441]

    С течением времени изменяется отношение к различным источникам энергии. Например, уголь в начале XX в. был основным источником энергии, а полвека спустя уступил свои позиции нефти и позднее газу. В настоящее время уголь вновь привлекает внимание и особенно в связи с возможностью получения из него синтетического жидкого топлива. [c.78]

    В последнее время широкое развитие получила газовая промышленность. На газогенераторных станциях уголь превращается в различные промышленные газы — воздушный, водяной и др. Генераторные газы используются не только для бытовых и энергетических целей, но служат также сырьем для синтеза— получения различных синтетических химических продуктов, в том числе и искусственного жидкого топлива. [c.5]


    Широкое использование горючих веществ органического происхождения объясняется тем, что запасы их достаточно велики и доступны для добычи, органические горючие вещества обладают большой реакционной способностью, при горении выделяют много тепла, продукты их сгорания не действуют губительно на животных и растения. Основная часть органических горючих веществ сжигается для получения тепла (в свое время сжигание было единственным способом их использования), поэтому они получили название топлив. Наиболее распространены в природе твердые топлива—уголь, сланцы, торф и древесина. Жидкие и газообразные топлива—нефть и природные газы—распространены значительно меньше. Однако добыча и использование жидких и особенно газообразных топлив значительно легче, чем твердых, в том числе и основного твердого топлива—угля. [c.9]

    Оо способу получения различают природные и искусственные топлива. К природным относятся натуральные топлива уголь, сланцы, торф, нефть, природные газы. Из твердых топлив к искусственным относятся кокс, брикеты угля, древесный уголь из жидких — мазут, бензин, керосин, соляровое масло, дизельное топливо, из газовых — газы доменный, генераторный, коксовый, подземной газификации. [c.7]

    Особое место среди способов получения из угля жидкого топлива путем гидрогенизации занимают такие методы, когда непосредственным сырьем для гидрирования является не самый уголь, а легко получаемая из пего техническая смесь горючих газов, так называемый водяной газ . Этот газ образуется из угля действием на него водяного нара нри температуре около 1000° по реакции  [c.509]

    Реакция каталитического гидрирования окиси углерода с образованием смеси, главным образом, жидких углеводородов применяется для получения моторного топлива из угля. Уголь путем газификации [c.150]

    Тем самым была похоронена идея топливного элемента прямого действия, но это ни в коем случае не относится к самой идее обратимого электрохимического получения энергии. С точки зрения учения о равновесии и кинетики реакций не может быть никаких сомнений в том, что полученные из первичного топлива (угля) вторичные жидкие топлива и горючие газы могут достаточно активно взаимодействовать уже при комнатной температуре и тем самым должны обеспечить достаточные плотности тока. Основанием для такой уверенности служит тот факт, что обычный уголь при комнатной температуре не загорается, в то время как жидкие топлива легко воспламеняются, а водород или окись углерода даже взрываются. Для такого так называемого топливного элемента, косвенного действия особенно перспективны сильно реагирующие с кислородом окись углерода и водород, причем последний обладает тем преимуществом, что дает в качестве конечного продукта реакции только воду, которая не взаимодействует с электролитом (в противном случае расходовался бы электролит), не закупоривает поры и химически не отравляет электроды (фиг. 1). [c.14]

    В качестве сырья для гидрогенизации используются как каменные,. .так и бурые угли. Лучшим из них для получения искусственного жидкого топлива является уголь, характеризующийся наименьшим содержанием в органической массе серы, кислорода, азота и максимальным содержанием водорода. Ценными являются угли с отношением углерода к водороду не более 16—17, например —88%, Н —5,5%. [c.224]

    Каменный уголь также частично подвергают переработке для получения кокса, широко применяемого при выплавке чугуна в доменных печах и при производстве чугунного литья в вагранках. Попутно с коксом получается коксовый газ, используемый для оболрева сталеплавильных и других промышленных печей и применяемый также в качестве бытового топлива и сырья для получения водорода. В процессе коксования, кроме того, получают каменноугольную смолу, используемую для производства ряда химических продуктов от взрывчатых веществ до духов и фармацевтических П1репа ратов. Часть получаемой смолы применяют также в виде жидкого топлива в печах. [c.4]

    Первый способ получения синтетической нефти основан на ожижении угля . Способ этот заключается в том, что сильно измельченный уголь (применяют главным образом бурые угли, сравнительно бедные углеродом, но богатые водородом) смешивают с тяжелым маслом и нагревают с водородом до 400—500° при давлении до 200—300 ат. При этом углерод с водородом соединяются и образуют разнообразные углеводороды. Гидрированная смесь подвергается дробной перегонке и получаются фракции, отвечающие бензину, легкому и среднему маслу. Производство синтетического жидкого топлива исчисляется в мировом масштабе миллионами тонн в год. [c.61]

    В настоящей книге описаны сырье для заводов искусственного жидкого топлива (главным образом уголь) и предварительная подготовка угля, нроцессы сухой перегонки твердого топлива (главным образом полукоксования), вопросы получения и очистки отопительного и технологических газов, в том числе водорода, производство синтетического жидкого топлива из газов, процессы деструктивной гидрогенизации топлива, методы получения высококачественного авиатоплива (процессы ароматизации и алкилирования) и методы очистки заводских сточных вод. [c.12]

    При первичных процессах в качестве топлива применяют кокс, древесный уголь, каменный уголь и антрацит. При вторичных металлургических процессах применяют газообразное и жидкое топливо, которое служит только для получения тепла. [c.429]

    Измельченные барит и уголь поступают через автоматические дозаторы в барабанный или лопастной смеситель. Полученная шихта с помощью транспортных механизмов (элеваторов, шнеков и т. п.) поступает в бункер, откуда через автоматический питатель, например тарельчатого типа, подается в трубчатую вращающуюся печь, в которой ведется восстановление барита. Печь расположена с уклоном 5—6° и делает от 1 до 5 об/мин. В зависимости от производительности (до 40—50 т барита в сутки) устанавливаются печи длиной до 40 л с внутренним диаметром до 1,5—2 м. Стальной корпус печи футерован внутри двумя слоями шамотного кирпича. Шихта, подаваемая в верхний холодный конец печи, движется навстречу греющему газу. Обогрев печи осуществляется с помощью генераторного газа, подаваемого в горячий конец печи. Сюда же подводится необходимый для сжигания генераторного газа воздух. Иногда вместо генераторного газа для обогрева печи используют пылевидное твердое топливо (уголь) или жидкое топливо (мазут), подаваемые через горелки или форсунки на горячем конце печи. [c.243]

    В странах, не располагаюших достаточными запасами нефти (например, в Германии), уголь был применен для получения жидкого топлива. Так как при сухой перегонке угля получается не более 10—12% жидкого горючего, а главным продуктом является кокс, был разработан процесс ожижения угля путем его гидрирования. Этот процесс был разработан Бергиусом, а потому иногда называется бергенизацией . [c.30]

    Американская фирма Хайдро-карбон рисёрч инкор-порейтед разработала процесс получения жидкого топлива из угля, названный водород-уголь . В этом процессе сухой уголь (угольный шлам) подвергается каталитической гидрогенизации в реакторе с псевдоожиженным слоем [211]. [c.47]

    Интерес к кислородсодержащим продуктам вызван, во-первых, возможностью получения жидких топлив не нефтяного происхождения (этанол можно получать брожением зерна, сахарного тростника, древесины, части городских отходов), однако отмечается, что при брожении расходуется в два раза больше энергии, чем содержится в получаемом этаноле [65,бб], поэтому такой путь решает не проблему нехватки энергии вообще, а щ)облему нехватки бензина. Для некоторых стран (Бразилия, Филиппины) такое направление считается перспективным. Интересно, что программа "зеленого бензина" поддерживается также правительством США. Наиболее универсальным способом получения искусственного жидкого топлива является превращение углеводородного газа и твердых угле-водрродсодержащих материалов (уголь, сланец, древесина, городские отходы) в синтез-газ и затем в спирты. [c.24]

    Рассмотренные в первой главе технологии переработки ТПЭ предусматривают использование как их химического, так и энергетического потенциала. Особенностью всех технологий является их многотоннажность, широкий ассортимент получаемых продуктов. Как отмечено ранее, от добычи топлив до получения целевых продуктов совершенствование всех процессов учитывает, как правило, сочетание различных технологий, комплексную переработку ТПЭ. Например, при добыче и обогащении углей целевыми продуктами являются сортовой уголь и окускованные энергетические, бытовые топлива. Комплексная переработка, включающая процессы газификации, синтеза Фи-шера-Тропша, различные химические процессы, позволяет не только повысить уровень механизации непрерывных процессов, но и перейти к более ло-бильным и вариабельным процессам переработки жидких и газообразных продуктов, получаемых из угля. Именно этим обусловливается высокая рентабельность получения синтетического жидкого топлива и химических продуктов из углей в ЮАР и Малайзии. [c.83]

    Процесс Бергиуса. — Производство жидкого топлива путем деструктивной дегидрогенизации угля было разработано в Германии Бергиусом в период первой мировой войны и одно время находило широкое применение. По-видимому, уголь представляет собой сложное переплетение углеродных колец, которые при этом процессе расщепляются на фрагменты, гидрирующиеся до алифатических и циклических углеводородов. По такому способу из 1,5—2 т угля получается 1 т бензина. В ранних вариантах процесса порошкообразный уголь смешивали с тяжелыми погонами дегтя и добавляли 5% окиси железа (первоначально это делали для связывания имеющейся в угле серы, но в действительности оказалось, что она служит и катализатором). Пастообразную массу нагревали в присутствии водорода до 450—490 °С и давлении 200 ат. Путем введения более активных катализаторов (олово, свинец и др.) реакцию можно проводить в жидкой, а под конец в паровой фазе. Полученный продукт разделяют перегонкой на бензин (до 200 °С), газойль (200—300 °С) и остаток, который прибавляют к свежей порции угля и снова подвергают гидрогенизации. Типичная бензиновая фракция содержит 74% парафинов, 22% ароматических углеводородов, 4% олефинов. Как сообщалось, октановое число таких бензинов 75—80. [c.306]

    Сейчас в США метан природного газа как исходный материал в производстве синтетических метанола и аммиака в значительной степени вытеснил каменный уголь. Метан служит также сырьем для получения синтетического жидкого топлива по усовершенствованному методу проведения процесса Фишера—Тропша, при котором образуется значительное количество кислородсодержащих соединений как побочных продуктов. К концу второго периода метан стали использовать для производства ацетилена по методу. [c.21]

    Наиб крупнотоннажные потребителн К у - топливно-энергетич. комплекс и коксохим. произ-во (более 25%, преим угли марок Г, Ж, К, ОС) с получением кокса, коксового газа и ценных хим. продуктов (см. Каменноугольная смола, Каменноугольные масла, Коксохимия) Перспективное направление использования К у.-гидрирование угля для выработки синтетич. жидкого топлива Представляют интерес процессы газификации К. у. (см. Газификация твердых топлив, Газификация твердых топлив подземная). Переработкой К у. извлекают в пром. масштабах V, Ое и 5, получают активный уголь и т д [c.303]

    Как видно из рис. 16, оба метода получения искусств венного жидкого топлива сейчас не могут конкурировать с процессами нефтепереработки из-за цен на бензин. При этом синтез более перспективен в области низких цен на уголь, а гидрогенизация - в области высоких цен. На графике показан уровень цен на бензин в ФРГ в 1971 г. ив настоящее время. Если этот рост продолжится, вопрос об искусстаенном жидком топливе может стать актуальньп и с экономической точки зрения. [c.98]

    Современные крупнотоннажные отрасли промышленности, связанные с производством моторных топлив и смазочных материалов,— химическая, нефтехимическая, газовая и ряд других— в основном базируются на переработке нефти. Однако ее ресурсы с учетом быстро растущих темпов потребления являются весьма ограниченными. В этой связи в решениях XXVII съезда КПСС поставлен ряд задач, направленных на улучшение топливного баланса страны в первую очередь за счет сокращения доли нефтяного сырья, используемого в энергетике, а также совершенствования методов углубленной нефтепереработки и вовлечения твердых горючих ископаемых в производство синтетических жидких топлив, процессов газификации, энергохимической технологии и т. д. В современных условиях уголь оценивается с новых позиций как химическое сырье и топливо. Поэтому в Советском Союзе и во всех развитых капиталистических странах ведутся интенсивные исследования по разработке методов получения органических соединений и жидкого топлива на основе природного газа и угля. Наличие в нашей стране таких топливно-энергетических комплексов, как Канско-Ачинский, Экибастузский, Кузнецкий и др., служит реальной предпосылкой создания мощных сырьевых источников для развития процессов деструктивной гидрогенизации. [c.6]

    Более удачными оказались начинания южноафриканских промышленных компаний. В 1957 г. в ЮАР было закончено строительство крупного завода производительностью 260 тыс. т в год для получения искусственного жидкого топлива из смеси СО+Н2. Сырьем служил дешевый бурый уголь, который добывался на близлежащем месторождении открытым способом. Добыча производилась с помощью экскаваторов и была полностью механизирована. Применение усовершенствованной технологии синтеза, высокопроизводительных методов очистки газов газификации, а также полное использование всех отходов дало возможность компании снизить себестоимость продукции. Этот завод работает до сих пор и дает достаточную прибыль. В 1980 г. законче-на постройка второго завода производительностью 1,7— 2,2 млн. т жидких продуктов. В 1984 г. должен вступить в строй третий завод еще большей мощности. [c.21]

    Применение. Алмазы применяют для сверления, резки, огранки и шлифовки особо твердых материалов при бурении горных пород для изготовления деталей приборов и инструментов, фильтров и абразивных материалов в ювелирном деле. Графит употребляют в производстве огнеупоров, электротехнических изделий и материалов в химическом машиностроении в качестве конструкционного материала как компонент смазочных и антифрикционных составов для производства карандашей и красок для предупреждения образования накипи на стенках котлов. Из искусственного кускового графита и пирографита изготовляют сопла ракетных двигателей, камеры сгорания, носовые конусы и некоторые детали ракет блоки иэ особо чистого искусственного графита используют в ядерной технике как замедлители нейтронов. Уголь является топливом, применяется в черной и цветной металлургии (в производстве алюминия, при рафинировании меди и др.), а также в производстве сероуглерода, активного угля, электроугольных изделий, для получения жидких каменноугольных продуктов и, путем подземной газификации, газообразпого топлива. Технический является ингредиентом резин и пластмасс, основным черным пигментом для печатных и малярных красок используется при изготовлении линолеума, клеенки, кирзы, галантерейных материалов, лент для пишущих машинок, копировальной бумаги и др. входит в некоторые полировочные составы как теплоизоляционный материал в дорожном строительстведобавка [c.293]

    Исходным сырьем для получения современных жидких топлив являются нефть, каменный уголь, сланцы, естественные газы и газы, образующиеся при переработке нефти и угля. Помимо прямой перегонки, в настоящее время разработан и осуществлен в промьшхлен-яом маспггабе ряд термических и каталитических процессов переработки нефти, которые позволяют не просто получать жидкие топлива, но дают возможность направлять процессы с целью получения топлив необходимого качества. В основе этих методов лежат процессы преобразования структуры молекул углеводородов, составляющих исходное сырье. [c.10]

    НЫЙ уголь, в 1918 г. в связи с потребностью страны в жидком топливе были начаты исследования в области крекинга нефти, дегидрогенизацион ного катализа и др. Задачу получения бензиновых фракций из тяжелых -фракций нефти в 30-х годах успешно решили Н. Д. Зелинский, Б. А. Казанский и И. А. Анненков. [c.139]

    Применение водорода. Благодаря своей легкости водород широко применяется в воздухоплавании для заполнения дирижаблей и воздушных шаров. Однако большой недостаток при этом заключается в горючести водорода. Поэтому теперь в воздухоплавании применяют неогнеопаспую смесь водорода с газом гелием (гелий отличается полной негорючестью). Значительные количества водорода расходуются для получения высоких температур (водородо-кислородное пламя). При помош и водорода жидкие жиры превращают в более ценные твердые ишры. Этот процесс называют гидрогенизацией жиров (от латинского названия водорода—Hydrogenium). В разработке этого процесса большую роль сыграли труды Н. Д. Зелинского. Далее, водород получил большое применение для приготовления искусственного жидкого топлива из каменного угля. Для этого уголь подвергают действию водорода при 450—500°С под значительным давлением, причем получается продукт, пoxoн ий на природную нефть. Из такой искусственной нефти можно получать бензин, керосин, смазочные масла и другие продукты, так же как из природной нефти. [c.59]

    Имеются такие области применения топлива, где нефтяное топливо имеет ряд преимуществ в специальных индустриальных ночах, в производстве стекла, в сталелитейной промышленности. Для этих нужд нефть применялась, в точение многих лет даже в странах, добывающих уголь. Существенный сдвиг в области применения нефти в качестве важнейшего источника топлива может произойти в том случае, если значительная часть увеличивающейся потребности в паре для промышленности, производство электроэнергии, производство городского газа и домашнее отопление будут переключены на нгидкое горючее. Эти отрасли производства существуют в странах, добывающих уголь, которые еще не переведены на жидкое топливо, хотя Великобритания недавно решила построить ряд заводов для каталитической газификации тяжелых нефтяных остатков в целях снижения с-ироса на коксующютея уголь дпя получения городского газа. [c.540]

    Основную массу жидкого топлива в Германии получали из бурого угля путем гидрогенизации по Ф. Вергиусу, использовавшему классический метод В. П. Ипатьева. Промышленности полукоксования на каменном угле не существовало, поскольку для получения бензина этот процесс оказался экономически невыгодным. Каменный уголь в Германии использовался в процессе полукоксования только на опытных установках в связи с разработкой теоретических вопросов. [c.79]

    Большинство веществ при определенных условиях способно вступать во взаимодействие с кислородом воздуха, т. е. окисляться. Быстро протекающий процесс окисления, в результате которого выделяется большое количество тепла, нагревающего продукты окисления до высоких температур, называется горением. Однако к топливу можно отнести только те горючие материалы, которые при горении выделяют большое количество тепла на единицу массы или объема, не теряют своих тепловых свойств при длительном- хранении, относительно легко загораются, не выделяя при горении вредных веществ. Топливо может находиться в трех агрегатных состояниях твердом, жидком и газообразном. По происхождению его подразделяют на естественное (натуральное) и искусственное топливо. К естественному (натуральному) твердому топливу относят растительное (дрова, солома и др.) и ископаемое (торф, уголь, горючие сланцы и др.) топливо, к жидкому—нефть, к газообразному — природный, попутный и нефтяной газы. К искусственному твердому топливу относят топливо, полученное при термохимической переработке натурального топлива (древесный уголь, торфяной и угольный кокс) и меха1Г ческой обработке натурального топлива (брикеты из древесньи опилок, торфа, угля и других материалов), к жидкому — топливо, полученное при термической переработке нефти, смол (бензин, керосин, мазут) и химической переработке натурального топлива (бензин, керосин, дизельное топливо, мазут, коллоидное топливо), к газообраз- [c.6]


Смотреть страницы где упоминается термин Получение жидких топлив из угля: [c.8]    [c.13]    [c.220]    [c.571]   
Смотреть главы в:

Моторные, реактивные и ракетные топлива Изд4 -> Получение жидких топлив из угля

Моторные топлива масла и жидкости Т 1 -> Получение жидких топлив из угля




ПОИСК





Смотрите так же термины и статьи:

Жидкое топливо



© 2025 chem21.info Реклама на сайте