Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции присоединения к олефинам и диолефинам

    Каталитический крекинг олефиновых углеводородов в присутствии, например, алюмосиликатных катализаторов происходите гораздо большей скоростью, чом крекинг соответствующих парафиновых углеводородов кроме того, перенос водорода является основной реакцией, особенно для третичных олефинов [17]. В то же время термический крекинг олефинов происходит, примерно, с такой же скоростью, как и крекинг парафиновых углеводородов перенос водорода в этом случае представляет собой неизбирательную реакцию, имеющую значительно меньшее значение [17]. Такие факты характерны для поведения ионов карбония и свободных радикалов. Более легкий каталитический крекинг олефинов обусловлен более легким образованием ионов карбония путем присоединения протона катализатора к олефину. Перенос водорода, при котором имеет место отщепление гидридного иона от олефиновой или парафиновой молекулы. ионом карбония (правило 5), происходит легче в случае третичных ионов, чем вторичных, и является поэтому более избирательным к третичным олефинам. Соединения, являющиеся в реакции переноса донорами водорода, превращаются в диолефины, ацетиленовые и ароматические углеводороды, а также образуют отложения па катализаторе. [c.238]


    Реакции присоединения к олефинам (241). Реакции присоединения к диолефинам (241). Реакция с винилацетиленом (243). Реакции присоединения к кетену (245). Реакции конденсации с ароматическими соединениями. . .  [c.275]

    Олефиновые и диолефиновые углеводороды цепной структуры имеют одну (олефиновые) или две (диолефиновые) двойные связи. Общая формула олефинов — С Нг , диолефинов — С Н2 2. Ввиду наличия двойных связей углеводороды этих групп более реакционно способны и менее химически стабильны, чем парафиновые, нафтеновые и ароматические углеводороды. Олефиновые и диолефиновые углеводороды способны к реакциям присоединения, в том числе и окисления. Поэтому присутствие углеводородов этих групп в авиационных топливах не допускается. [c.8]

    Реакции присоединения к олефинам и диолефинам [c.101]

    Реакции присоединения протекают с диолефинами, обладающими сопряженными двойными связями, весьма своеобразно. Так, например, если подействовать на бутадиен-1,3 хлором, то последний присоединится не к двум соседним углеродным атомам, связанным двойной связью (как это обычно происходит с олефинами или диолефинами, имеющими кумулированные или изолированные связи), а иначе атомы хлора присоединяются к концам цепи, а вместо двух двойных связей возникнет одна, двойная связь на месте простой. [c.38]

    Гидрирование — присоединение водорода к непредельным углеводородам — протекает в соответствии с термодинамическими расчетами при низких и средних температурах. При высоких температурах протекает обратная реакция — дегидрирование парафиновых углеводородов в олефины и диолефины. Высокое давление благоприятствует реакции гидрирования. Однако на некоторых катализаторах гидрирование происходит нацело и при атмосферном давлении. Наиболее активными катализаторами для гидрирования олефиновых углеводородов являются металлы — платина, никель, кобальт, палладий и др. Подробное изучение процессов гидрирования и их кинетических закономерностей служило объектом многих исследований С. В. Лебедева и его сотрудников [50], которые установили основные закономерности этого процесса. [c.44]

    Восстановительное элиминирование, приводящее к сочетанию координированных лигандов, является одной из наиболее общих реакций. Как было установлено ранее, восстановительное элиминирование представляет собой процесс, обратный окислительному присоединению. При присоединении нейтральных лигандов, таких как оксид углерода, олефин, диолефин и фосфин, к комплексам металлов типа происходит сочетание лигандов, находящихся у атома металла, с образованием Н—К. Одновременно формальная степень окисления металла понижается на две единицы. [c.196]


    Присоединение алкильных производных щелочных металлов к олефинам упоминалось как один из методов их получения. В случае сопряженных диолефинов, таких, как бутадиен, может происходить цепная реакция, в которой новая молекула металлоорганического соединения немедленно присоединяется к двойной связи другой молекулы бутадиена и так далее до тех пор, пока не образуется высокомолекулярное соединение. Мортон и сотрудники [15] широко исследовали применение в таких синтезах амилнатрия (см. стр. 332). [c.88]

    К сожалению, в подавляющем большинстве работ не исследовались условия реакции, способствующие теломеризации. Присоединению карбоновых кислот к непредельным соединениям посвящена обширная монография [8] . Поэтому здесь все внимание акцентируется только на теломеризации олефинов и диолефинов с карбоновыми кислотами. [c.150]

    Получение диолефинов с большим числом С-атомов из олефинов за счет реакций присоединения — отщепления формальдегида осуществляется в реакции Принса. Технология получения углеводородов различных классов на основе родственного форм-альдегиду метанола через стадию образования диметилового эфира разработана недавно фирмой Mobil Oil [5] и т. д. [c.9]

    Насыщенные углеводороды ряда парафинов и циклопарафинов резко отличаются от ненасыщенных углеводородов (олефинов, диолефинов или ацетиленов в то.м отао шении, что, в то время как первые из этих соединений дают при действии различных химич( ских реагентов только продукты замещения, ненасыщенные углеводороды могут образовать при этом также продукты присоединения, причем некоторые из ненасыщенных углеводородов вступают одновременно как в реакции замещения, так и в реакции присоединения. Примером этого основного различия насыщенных и ненасыщенных углеводородов может служить соединение хлора с метаном, являющимся типичным насыщенным углеводородом, и с этиленом, типичным представителем ненасыщенных углеводородов. Происходящие при этом реакции могут быть выражены следующими уравнениями  [c.1120]

    Реакции присоединения. Образование новых связей металл — углерод в результате присоединения к ненасынгенному углеводороду металлалкила или металларила также ограничивается более или менее сильно электроположительными элементами, включая бериллий и алюминий. Алкильные производные щелочных металлов легко присоединяются к ненасыщенной углерод-углеродной связи в сопряженных системах или в олефинах, имеющих у двойной связи ароматическую группу. С сопряженными диолефинами алкильные производные щелочных металлов реагируют как катализаторы полимеризации и образуют полимеры углеводородов с большим молекулярным весом. (Так как на концах цепи остаются атомы металла, то эти полимеры являются металлалкилами, в которых алкильная группа чрезвычайно велика.) Алкильные производные сильно электроноакцепторных элементов бериллия и алюминия могут присоединяться к простым олефинам, например к этилену, но процесс повторяется и в результате реакции получаются полимеры углеводородов. Например, при 80° бериллийалкилы вызывают полимеризацию этилена, а алюминийалкилы и их производные используются в промышленности как катализаторы полимеризации олефинов [20, 21]. [c.70]

    Непредельные углеводороды. Особый характер двойной связи (понятие о я- и ст-связях). Цис-транс-пзомерия. Изомерия положения двойной связи. Номенклатура моно- и диолефинов и ацетиленов. Отличия между Женевскими и Льежскими названиями> Гидрирование моноолефинов. Электрофильный характер реакций присоединения галоидов, галондоводородных кислот н серной кислоты к олефинам. Правило Марковникова и его современное объяснение. [c.218]

    Изучалась реакция присоединения цианистого водорода к непредельным соединениям в присутствии каталитических количеств тетракарбонила никеля или его фосфино-, арсино- и стибинозамещенных. Оказалось, что цианистый водород присоединяется к олефинам, диолефинам [1692, 1693] и ацетиленовым производным [892, 1043].  [c.125]

    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]


    В условиях обычного пиролиза, когда глубина разложения исходных веществ достаточно велика, с определенной глубиной протекают и вторичные реакции, например разложение олефинов и диолефинов, образовавшихся на первой стадии, реакции типа присоединения и т. д. При этом наиболее стабильным соединением из первичных олефинов является этилен. Пропилен и бутены на второй стадии реакции в присутс-твии атомарного водорода разлагаются из пропилена п бутена-1 [c.73]

    За этой реакцией может следовать обычное взаимодействие такого радикала с а-метиленовой группой с образованием радикала, ведущего цепь. В случае диолефинов с конъюгированными двойными связями,даже если а-метилено-вые группы способны к взаимодействию с кислородом, такое присоединение будет, конечно, предпочтительным. При относительно низких температурах, при которых обычно изучались процессы окисления олефинов с образованием гидроперекисей, длина кинетической цепи, как правило, очень велика (около 100). Из этого следует, что, даже если единственным механизмом инициирования является взаимодействие двойной связи с кислородом, количество продуктов реакции, имеющих иное строение, чем обычные моногидроперекиси, будет составлять только около 1 %. Все это в сочетании с тем, что уже в начальной стадии реакции почти все акты инициирования происходят с участием гидроперекисей, делает крайне трудным решение вопроса, какой из этих двух возможных типов инициирования в действительности имеет место. Однако важно отметить, что продукты окисления метилолеата при высоких температурах (120°) могут быть получены только в результате взаимодействия кислорода с двойными связями [7, 43[. При этих условиях длина цепи, возможно, уменьшается до значения, близкого к единице, так что строение образующихся продуктов полностью определяется природой реакции инициирования. Исследование этого типа инициирования на олеа- [c.141]

    Реакции алкилирования [472—489] ароматических веществ олефинами и диолефинами (чаще в паровой фазе) характерны для хлористого цинка, который часто наносят на АЬОз. Вероятно, активность Zn U ниже, чем А1СЬ. Безводный хлористый цинк проявляет высокую активность в отношении присоединения различных галогенсодержащих органических веществ по кратным связям (даже при температуре ниже 0° С) [359, 490—498]. В сходных условиях в присутствии различных солей цинка происходит присоединение карбонильных соединений к кетенам с образованием -лактонов [502—507] в этих реакциях происходит разрыв С=С-связи в кетене и С=0-связи в карбонильном соединении. Хлористый цинк катализирует также процессы присоединения, требующие разрыва С—О-связи [508—512]. [c.1348]

    Обычно для выделения диолефинов (особенно с малым молекулярным весом) из смесей используется способность некоторых веществ избирательно растворять эти углеводороды. Для этой цели особенно подходит жидкая двуокись серы, однако в этом случае мы имеем очевидно дело не только с растворением, так как несомненно образуются также продукты присоединения. Например Matthews и Elder получили продукты соединения различных олефинов с сернистым ангидридом, а Staudinger получил мономерные твердые продукты реакции, действуя на бутадиеновые углеводороды жидким сернистым ангидридом при [c.179]

    Казанский, Гостунская и Добросердова [35], чтобы выяснить, в какой степени на реакцию каталитического гидрирования диенов может влиять вторичная реакция перемещения двойной связи в олефинах, провели частичное гидрирование над платиной, палладием и никелем двух а-изоами-леной — возможных продуктов гидрирования изопрена — и частичное гидрирование над палладием 2,5-диметилгексена-З — продукта гидрирования 2,5-диметилгексадиена-2,4 (диизокротила). В каждом опыте было взято по 0,5 моля олефина. Моноолефины гидрировались на 14—28% в тех же условиях, в которых изучалось гидрирование диолефинов. Результаты опытов, приведенные в табл. 3, показывают, что в присутствии платиновой черни для всех исследованных моноолефинов имело место лишь присоединение водорода к двойной связи в нрисутствии палладия наряду с присоединением водорода происходит и перемещение двойной связи 2-метилбутен-1 почти полностью изомеризовался в 2-метилбутен-2. Расчет термодинамически равновесной смеси изоамиленов для 26°С, сделанный по табличным значениям изобарных потенциалов [36], дает следующие результаты 2-метилбутен-2 — 92%, 2-метилбутен-1, — 7,8%, З-метилбутен-1 - 0,2%. [c.592]


Смотреть страницы где упоминается термин Реакции присоединения к олефинам и диолефинам: [c.414]    [c.343]    [c.111]    [c.326]    [c.155]    [c.354]   
Смотреть главы в:

Галоидэфиры -> Реакции присоединения к олефинам и диолефинам




ПОИСК





Смотрите так же термины и статьи:

Диолефины

Диолефины из олефинов

Присоединение диолефинам

Реакции присоединения



© 2024 chem21.info Реклама на сайте