Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение редкоземельных и трансурановых элементов

    Основные направления аналитического и технологического использования ионообменной хроматографии следующие 1) разделение близких по свойствам элементов с применением комплексообразующих реагентов (например, редкоземельных и трансурановых элементов) 2) удаление мешающих ионов 3)концентрирование ценных микроэлементов из природных и промышленных вод 4) количественное определение суммарного содержания солей в растворах 5) деминерализация воды 6) получение кислот, оснований, солей извлечение редких и рассеянных элементов (урана, золота, серебра, германия и др.). [c.225]


    Создание и совершенствование хроматографических методов исследования в значительной степени обусловило быстрые темпы развития современной молекулярной биологии, химии редкоземельных и трансурановых элементов. Хроматографические методы выделения и разделения разнообразных веществ осуществлены также в крупных промышленных масштабах. [c.305]

    Интенсивное развитие метода ионообменной хроматографии, являющей ся, наряду с распределительной, вариантом хроматографического метода М. С. Цвета, началось в связи с необходимостью разделения смесей осколочных продуктов, в основном состоящих из редкоземельных элементов и их химических аналогов — трансурановых элементов, получаемых при облучении тяжелых ядер нейтронами или многозарядными ионами. ОднакО вскоре была показана целесообразность распространения метода ионообменной хроматографии на препаративное разделение природных смесей р. з. э. Это направление оказалось столь перспективным, что в настоящее время ионообменная хроматография является незаменимым методом получения индивидуальных р. з.э. высокой чистоты в лабораторных и производственных масштабах. [c.284]

    М раствором лактата аммония радиоактивных изотопов редкоземельных элементов, поглощенных на катионите КУ-2, подтверждает возможность разделения этих элементов. Аналогично методом ионного обмена достигается разделение трансурановых элементов. [c.97]

    Ионообменный метод разделения. Метод ионообменной хроматографии используется для разделения элементов с близкими химическими свойствами, например, редкоземельных, трансурановых, щелочноземельных и т. п. В этом методе удачно сочетаются универсальность и эффективность с простотой проведения опытов. Полнота разделения обусловлена многократным повторением актов адсорбции и десорбции. [c.169]

    В ряде случаев распределительная хроматография имеет преимущества перед обычной экстракцией [704, 708]. Ее особенно выгодно использовать для разделения элементов с близкими свойствами (имеющих мало различающиеся константы экстракции), например редкоземельных. Колонка удобна для работы с высокоактивными растворами, когда обычные делительные воронки использовать нельзя, а лабораторные экстракторы мало пригодны для дистанционного управления. При хроматографировании с обращенными фазами можно работать с очень малыми объемами органического растворителя (порядка 1 мл и даже меньше), причем можно применять растворители, образующие устойчивые эмульсии. Хроматографическая колонка позволяет определять коэффициенты раснределения по выходным кривым, что имеет значение для тех случаев, когда обычным путем коэффициент распределения определить трудно (трансурановые элементы). К недостаткам распределительной хроматографии относится трудность использования реагентов, не обеспечивающих быстрой экстракции, поэтому, например, ТТА мало удобен. [c.219]


    При некоторых типах ядерных реакций (например, при облучении ядер элементов частицами высоких энергий и процессах деления тяжелых ядер) могут образоваться очень сложные смеси радиоактивны изотопов ряда элементов. Далее требуется их разделение и выделение в чистом виде как для изучения происходящих при этом процессов, так и для изучения свойств самих радиоактивных изотопов или использования их в качестве радиоактивных индикаторов. Приемы аналитической химии, используемые с учетом специфических условий (обычно приходится иметь дело с микроколичествами образующихся радиоактивных элементов), позволяют в ряде случаев проводить такие разделения с применением изотопных носителей или без них. Однако некоторые группы очень близких по свойствам элементов (редкоземельных, трансурановых и др.) обычными химическими методами разделяются весьма трудно. За последнее время эти задачи были успешно решены с помощью ионообменной хроматографии. Кроме того, оказалось, что часто ионообменными методами можно быстрее, проще и чище выделять и другие элементы, для которых обычно используются химические методы выделения. Поэтому в настоящее время разрабатываются хроматографические методы выделения многих элементов периодической системы. Преимущество этих методов состоит также в том, что в них отсутствуют явления соосаждений, захватов и т. д., причем чистые препараты можно получать в одном цикле. [c.384]

    Этот метод применяется в двух вариантах. В тех случаях, когда избирательность комплексообразования не очень велика, разделение группы элементов производится последовательным вымыванием их раствором одного комплексообразующего агента постоянной или постепенно изменяющейся концентрации. Таким образом производится разделение очень близких по свойствам элементов — редкоземельных, трансурановых и др. [c.386]

    Быстрые разделения редкоземельных и трансурановых элементов на катионитах производят обычно при нагреве до 90°. Если при этом применяется большое давление, оно сильно уве- [c.398]

    При разделениях редкоземельных и трансурановых элементов наиболее избирательно действующими комплексообразующими агентами оказываются анионы органических кислот. [c.401]

    Разделение редкоземельных и трансурановых элементов [c.402]

    Вещество мишени, представляющее обычно окись плутония, растворяют в азотной кислоте с примесью плавиковой кислоты, после чего производят окисление плутония подходящим окислителем до шестивалентного состояния. Затем осаждают трехвалентные трансурановые элементы на фториде лантана вместе с осколочными редкоземельными элементами. Осадок растворяют в азотной кислоте, насыщенной борной кислотой, и осаждают аммиаком гидроокись лантана. Таким образом выделяется сумма трансурановых и редкоземельных элементов. Далее необходимо отделить эти группы друг от друга и произвести разделение внутри групп на индивидуальные элементы. [c.402]

    Разделения элементов внутри групп можно выполнить быстро только ионообменными методами с применением растворов комплексообразующих агентов, причем разделение трансурановых элементов проводится точно так же, как и редкоземельных элементов в индикаторных количествах. [c.403]

    Коэффициенты разделения редкоземельных и трансурановых элементов при применении одноосновных монооксикислот [c.406]

    Наряду с этим комплексные соединения играют крупную роль в процессах, применяемых для разделения редкоземельных и трансурановых элементов, в химической технологии золота, никеля, кобальта, меди, в методах разделения щелочных металлов, в гальваностегии и др. [c.15]

    Все описанные приемы оказываются малоэффективными при разделении близких по свойствам элементов. Такую классическую проблему неорганической химии, как разделение редкоземельных элементов, имеющую важное значение и в прикладной радиохимии,, еще нельзя считать решенной. В настоящее время проводятся многочисленные исследования, направленные, в частности, на создание экстракционных методов разделения этих металлов. Совершенно аналогичную и очень важную задачу представляет собой и разделение трехвалентных трансплутониевых элементов. При решении этих задач, как правило, возникает необходимость в разделении упомянутых групп элементов, так как при ядерном синтезе трансурановых элементов образуются и редкоземельные элементы. [c.120]

    Процессы разделения элементов с помощью ионного обмена играют чрезвычайно важную роль в химии актиноидных элементов. Хорошо известно, что ионный обмен послужил ключом к открытию трансурановых элементов от америция до менделевия, так как можно было заранее предсказать порядок вымывания и приблизительное положение пиков неоткрытых элементов со значительной точностью. Эти предсказания основывались на аналогиях с редкоземельными элементами, поведение которых при ионообменных разделениях было уже в достаточной степени известно. [c.170]


    Разделение, основанное на комплексообразовании. Классическим примером является разделение редкоземельных элементов с применением в качестве элюента буферного цитрат-яого раствора. Известно также разделение трансурановых элементов при элюировании раствором лактата аммония. [c.50]

    Т. широко применяют в аналитич. химии для отделения и разделения элементов методами экстракции, для концентрирования при определении следов металлов, при переработке ядерного горючего, разделения элементов, близких по химич. свойствам, как, напр., редкоземельных или трансурановых элементов. К преимуществам Т. как экстрагента относятся высокие коэфф. распределения ионов металлов в системе вода—Т.— органич. растворители, что позволяет в большинстве случаев достигнуть практически полного извлечения, нелетучесть в широком интервале темп-р, вследствие чего работа с пим безопасна, малая растворимость в воде, малая чувствительность к радиоактивным излучениям, химическая инертность. Из р-ров нитратов Т. экстрагирует U ( 1), Се (IV), Zr, Hf, Th, Pu (IV), Ru (VI), РЗЭ, Np (IV), Np (VI), Am (VI), Au (IJI), Fe (III), S , Pa (IV). При определенных условиях уран может быть отделен практически от всех элементов. Для экстракции Т. применяют в виде р-ров в различных органич. растворителях (бензол, хлороформ, спирты, эфиры и т. д.) при этом снижаются коэфф. распределения, но увеличивается селективность. Для повышения селективности, кроме того, имеет большое значение применение различных маскирующих комплексообразующих в-в (в особенности комплексонов), а также выбор концентрации Т. в инертном растворителе, концент-)ации высаливателей и концентрация азотной к-ты. [c.128]

    Накопление количественных данных относительно устойчивости комплексных ионов актиния позволяет сравнивать поведение актиния и близких ему по химическим свойствам редкоземельных и трансурановых элементов в растворах комплексообразующих веществ. Это имеет значение как для нахождения условий разделения указанных элементов. [c.60]

    При групповом разделении трансурановых элементов и лантанидов, и в частности, при отделении лантана от индикаторных количеств америция, используют различие в растворимости фторидов этих элементов или, вернее, различие в устойчивости комплексных ионов трехвалентных лантанидов и трансурановых элементов с Р"-ионами. При разделении с помощью кремнефтористоводородной кислоты [12], используемой в качестве источника Р -ионов, можно осадить 90% присутствующего количества редкоземельных элементов, в то время как 90% америция (или кюрия) останется в растворе. Эти опыты свидетельствуют о большей прочности фторидных комплексных ионов трехвалентных трансурановых элементов по сравнению с аналогичными комплексами лантанидов. [c.175]

    Во время и после второй мировой войны для разделения редкоземельных металлов н соединений трансурановых элементов были разработаны специальные методы жпракции селективными растворителями. Жидкостная экстракция была самым популярным методом разделения до того, как в арсшале химиков-аналитиков появились более эффективные методы такие, как хроматография (1950-е-1960-е годы). [c.218]

    Несомненным достоинством книги М. Мархола является всестороннее освещение вопроса применения нонообмеиников в аналитической химии. В ней дается общее представ ление о синтетических органических (иониты) и различных неорганических (оксиды и гидроксиды, гетерополикислоты, фос-форомолибдаты и пр.) ионообменных сорбентах, подробно описаны основные свойства ионообменных сорбентов и методики их определения, а также кратко изложены вопросы теории ионообменное равновесие и теория тарелок. Основное внимание автор уделяет изложению хроматографических методов разделения ионов по группам (подгруппам) периодической таблицы Д. И. Менделеева, включая редкоземельные и трансурановые элементы (материал этого раздела занимает почти половину книги). Кратко описано применение ионитов для определения общего солесодержания растворов и удаления мешающих ионов. Специальная глава посвящена технике выполнения ионообменных опытов. [c.6]

    Известно, что редкоземельные, а также трансурановые элементы разделить обычными химическими методами весьма затруднительно. Для разделения суммы редкоземельных элементов в индикаторных количествах с успехом используется ионообменный метод при этом в качестве элюирующего вещества чаще всего применяются растворы лактата или оксибутирата аммония. [c.97]

    ТРИБУТИЛФОСФАТ м, (С4Н,0)зР04. Эфир ортофосфорной кислоты и н-бутилового спирта, плохо растворимая в воде жидкость применяется как экстрагент для разделения редкоземельных и трансурановых элементов, как пластификатор, теплоноситель и др. [c.445]

    Разделение редкоземельных и трансурановых элементов методом распределительной хроматографии с помощью тетрабутилгипофосфорной кислоты Препринт ОИЯИ Р-6-6401 (1972), 7 стр. KFK-tr-409, 1972, 3 р 4 figs, (нем ), [c.547]

    На рис. 10-11 показано ионообменное разделение трансурановых элементов и их аналогов — редкоземельных элементов с применением оксиизобутирата аммония на сульфостирольном катионите Дауэкс-50 (х = 12) [22]. Предполагаемые положения пиков элементов 102 и 103 показаны пунктирными линиями. [c.409]

    Как при облучении в реакторе, так и при взрыве бомбы получается смесь трансурановых элементов, из которой нужно выделить отдельные элементы. В этом случае помогает хроматографический метод разделения сложных смесей химически сходных элементов. Как уже говорилось, трансурановые элементы, включая лоуренсий (2=103), образуют семейство актиноидов (89 2 103), подобное семейству лантаноидов. Если в атомах редкоземельной группы последовательно добавляются 4/-электроны, то в атомах актиноидов происходит аналогичная застройка внутреннего 5/-уровня. Поэтому химические свойства соседних элементов почти совершенно одинаковы, отсюда кнмическое разделение затруднено, и только современная ионно-обменная методика позволяет достаточно быстро выделять и анализировать далекие по 2 актнноидныезлементы. [c.221]

    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]

    Первая и вторая главы переведены без изменений. Третья глава дополнена описанием синергетических эффектов при экстракции, влияния температуры и соэкст-ракции. В четвертую главу введен раздел о распределительной хроматографии с обращенными фазами. Наибольшие дополнения сделаны в пятой главе. Некоторые разделы этой главы заново переработаны, и, кроме того, в нее включен ряд новых экстракционных систем. К последним в первую очередь относятся алкилфосфорные кислоты, которые за последнее время получили широкое применение для выделения и разделения редкоземельных и трансурановых элементов. В шестую главу включены избирательные методы выделения европия и цезия, дополнены методы для меди, скандия и церия. В приложении приведены новые данные о диссоциации и распределении органических реагентов. [c.5]

    Другим перспективным и весьма простым методом разделения близких по свойствам металлов с мало различающимися значениями К является распределительная (экстракционная) хроматография [908[. В этом методе органическая фаза сорбируется на инертном носителе, наполняющем хроматографическую колонку. В качестве носителя обычно используется силиконированный силикагель, мелкозернистый тефлон, поливинилхлорид или полиэтилен, которые способны прочно удерживать на своей поверхности органическую фазу и на которых не происходят в заметной степени никакие химические или абсорбционные процессы. После нанесения разделяемой смеси на колонку проводится вымывание отдельных элементов подходящим элюентом. За счет многократного повторения процесса экстракции и реэкстракции можно, таким образом, селективно разделить даже редкоземельные и трансурановые элементы. [c.71]

    В настоящей работе обсуждаются результаты электромиграционного исследования комплексообразования актиния с ЭДТА, 1,2-ДЦТА, щавелевой и лимонной кислотами, т. е. веществами, наиболее эффективными при разделении редкоземельных и трансурановых элементов. Полученные значения констант устойчивости исследованных комплексов использовали для нахождения, во-первых, условий разделения актиния и наиболее близкого ему по свойствам лантана и, во-вторых, оптимальных условий разделения актиния и элементов, являющихся продуктами распада Ас, при разработке метода экспрессного электромиграционного определения его по дочернему [c.61]

    В реакторах, где образуется интенсивный поток нейтронов ( 5,5>10 нейтронов/см "с) (Вейнберг, 1967 Сиборг, 1967). В атомный реактор помещают мишень из исходного материала, которым обычно служит плутоний. В результате облучения из него образуются америций и кюрий. Они отделяются химическими способами от продуктов ядерной реакции и используются для изготовления мишеней второго поколения . Это позволяет получить элементы с еще более высоким атомным номером. Ог-ромное значение имеет контроль чистоты вещества мишени, а также степени разделения и очистки продуктов реакции. Новые аналитические проблемы возникают при работе с облученными материалами, так как в них, помимо актиноидов, присутствуют редкоземельные элементы как продукты распада или вещества, добавляемые для облегчения разделения трансурановых элементов с близкими химическими свойствами. [c.358]

    Исследование процессов комплексообразования редкоземельных элементов и трехвалентных трансурановых элементов в растворах ЭДТА имеет, несомненно, важное значение для ионообменного разделения этпх элементов. [c.63]

    Успешное осуществление ионообменного разделения сначала группы редкоземельных элементов, а затем и трехвалентных трансурановых элементов [41—46] с применением таких элю-ептов,как растворы натриевых, калиевых и аммониевых солей лимонной, винной, молочной и а-оксиизомасляной кислот оказалось возможным благодаря тому обстоятельству, что все они образуют комплексы с данными элементами. При прочих равных условиях разделение элементов происходит тем лучше, чем больше отличаются по прочности комплексы разделяемых элементов. Имеющиеся экспериментальные данные о ионообменном разделении элементов группы трансуранов показывают, что наиболее прочные комилексы их образуются, по-видимому, в растворах а-оксиизомасляной кислоты, затем молочной и лимонной кислот. [c.183]


Смотреть страницы где упоминается термин Разделение редкоземельных и трансурановых элементов: [c.328]    [c.225]    [c.245]    [c.258]    [c.403]    [c.410]    [c.128]    [c.61]   
Смотреть главы в:

Радиохимия и химия ядерных процессов -> Разделение редкоземельных и трансурановых элементов




ПОИСК





Смотрите так же термины и статьи:

Элементы редкоземельные

Элементы трансурановые

для разделения редкоземельных



© 2025 chem21.info Реклама на сайте