Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проблема энергий связей и взаимодействий типа 1—3 или

    Одной из основных проблем современной биохимии является выяснение механизма превращения энергии, выделяющейся в результате взаимодействия связей С — Н с кислородом с образованием двуокиси углерода и воды в энергию фосфоангидридной связи АТФ — единой платежной единицы в процессах переноса химической энергии, используемой для большого числа синтетических и метаболических функций. Если энергетическое сопряжение имеет химический механизм (хотя это еще не очевидно [185]), то оно может происходить либо непосредственно через окисление некоторых легко образующихся низкоэнергетических фосфатных производных до высокоэнергетических форм, которые могут затем переносить фосфат на АДФ, давая АТФ, либо через окисление некоторых других низкоэнергетических молекул до высокоэнергетических форм, которые могут дать макроэргический фосфат через серию реакций переноса. В последнее время стало известно несколько примеров такого активационного процесса, в котором происходит образование высокоэнергетического тиолового эфира при окислении альдегида. Тиоловый эфир может реагировать дальше, давая ацилфосфат и при известных обстоятельствах АТФ. Этот тип активации является ответственным за образование макроэргических фосфатных связей на субстратном уровне фосфорилирования, в котором метаболит, подвергающийся окислению, превращается в активированный продукт. В настоящее время, однако,еще нет уверенности, что аналогичный процесс происходит при многоступенчатом переносе электронов между субстратом и кислородом, который является ответственным за освобождение большей части энергии в аэробном метаболизме. Интерес к этой проблеме стимулировал поиски реакций, в которых фосфатная группа превращается в энергетически богатую форму посредством окислительного процесса, что может служить моделью реакций с природным коферментом. Хотя в настоящее время еще нет доказательств, что какой-либо процесс такого рода ответствен за окислительное фосфорилирование, эти исследования интересны с химической точки зрения и в качестве источника некоторых потенциально полезных синтетических методов. [c.132]


    Например, для определения теплоты образования циклогексана с помощью сжигания в калориметре необходимо определить разность между теплотой сгорания циклогексана и теплотой сгорания шести атомов углерода и шести молекул водорода. Это значит, что для определения теплоты образования (—123 кДж/моль) необходимо определить теплоту реакции (—3920 кДж/моль). Для того чтобы ошибка определения теплоты образования составила 1 кДж/моль или около 1%, теплота сгорания должна быть определена с точностью 1 кДж/моль или около 0,026%. Проблема становится все более острой по мере возрастания молекулярной массы углеводорода для определения АЯ с точностью 1% для алкана С20Н42 необходимо определить теплоту сгорания с точностью до 0,007%. Особую важность приобретают такие факторы, как чистота образца. Так, при сжигании алкана с примесью 0,01% воды точность определения теплоты сгорания составляет 1,5 кДж/моль. Для получения надежных результатов важно правильно установить тип реакции сгорания путем тщательного анализа исходных состояний и продуктов. Еще одна проблема возникает в связи с жидким или твердым состоянием углеводородов. Если соединение является жидким или твердым при 25 С, стандартная теплота образования АЯ° (которую относят к 298,15 К) включает энергию межмолекулярного взаимодействия конденсированного состояния (которая не имеет отношения к обсуждению энергии связи) или соотношения структура — энергия. Для такого обсуждения необходимо знать теплоту образования соединения в гипотетическом состоянии идеального газа. Эту величину можно получить из экспериментального значения АЯ , введя поправку на теплоту испарения (сублимации) до состояния идеального газа при 25 °С. Энергия межмолекулярного взаимодействия может значительно изменяться даже в ряду близко родственных соединений, что маскирует истинную величину термохимической устойчивости. [c.97]

    В тех случаях, когда вблизи порога нет сильно выраженных резонансных состояний компаунд-типа, т. е. если имеющиеся околопороговые резонансны носят так называемый потенциальный характер, можно развить другой очень перспективный подход к процедуре экстраполяции сечений, особенно эффективный для спин-поляризованного случая. Он заключается в использовании хорошо известных данных при не слишком низких энергиях Е 0,5-5 МэВ для построения надёжного многоканального потенциала взаимодействия с учётом важных каналов реакций а + 6 —> + с/ (г = О, 1,..., п). В отличие от амплитуды рассеяния этот потенциал является, вообще говоря, очень плавной функцией Е и пороговая энергия для него никак не выделена. Поэтому найденный потенциал можно использовать для предсказаний сечений в области порога а + 6 канала. Хотя сам метод известен весьма давно, в [71-73] предложена его конкретная реализация, использующая новый способ построения указанного многоканального потенциала. Он строится на основе прямого итерационного решения обратной задачи рассеяния, стартуя непосредственно с экспериментальных данных по сечениям, а также векторным и тензорным анализирующим способностям. Хотя до сих пор данный метод был практически применён лишь в задачах упругого рассеяния со связью каналов, нет сомнений, что его можно также эффективно использовать и для общей проблемы предсказания околопороговых сечений реакций с перестройкой. [c.247]


    Поэтому дальнейшее изучение влияния заместителя на изменение энергии активации выдвинуло перед авторами две основных проблемы определение относительных средних величин энергии активации при сопоставлении различных типов реакций и нахождение относительных величин энергий отталкивания и связи при изменении природы заместителей во взаимодействующих соединениях. [c.111]

    В 1917 г. Ленгмюром была дана определенная форма концепции хемосорбции. Выдвинутая Тейлором и в настоящее время достаточно подтвержденная гипотеза о том, что для перехода от физически к химически адсорбированному состоянию необходима энергия активации, привела непосредственно к исследованию вопроса, какие другие типы медленных процессов могут происходить в этих системах, к исследоваршю замены одного адсорбированного газа другим и разработке некоторых методов введения газа в субстрат, которое может легко контролироваться. Представления о том, что поверхность металлического субстрата можно рассматривать как щах.матную доску свободных валентностей, что испарение и конденсация на фиксированных участках являются независимыми процессами и что соседние молекулы не влияют на эти процессы, привели к первым попыткам кинетической обработки каталитических процессов, и наибольщее признание получила точка зрения, что при хемосорбц-ии в результате реакций радикалов образуются новые поверхностные соединения, т. е. поверхностные гидриды или металлорганические соединения. Результаты усовершенствования экспериментальной техники измерений теплот адсорбции заставили предположить, что эти постулаты вообще не могут быть правильными, и было обращено внимание на проверку каждого из них. В связи с проблемой поверхностной подвижности хемосорбированных частиц в свою очередь возникли следующие вопросы существует ли точка плавления или интервал плавления для хемосорбированного монослоя, равняется ли расстояние передвижения одному атомному радиусу или более, существует ли на кристаллической поверхности преимущественное направление для передвижения адсорбированных частиц, каков по величине период неподвижности между передвижениями. Мы также уверены, что по крайней мере во многих случаях теплота хемосорбции не постоянна, а падает с увеличением степени покрытия. Это явление привлекло внимание к таким представлениям, как гетерогенность поверхности, взаимодействие хемосорбированных радикалов или молекул поверхностных соединений друг с другом, и была постулирована возможность существования свободных валентностей, изменяющихся по силе при прогрессирующем образовании поверхностного соединения. [c.20]

    Здесь мы не може.м привести экспериментальных доказательств существования резонанса соответствующие данные для некоторых резонирующих систем будут приведены при описании этих соединений в последующих главах. Принцип резонанса нашел широкое применение в химии. Простейший пример его использования представляет проблема связи промежуточного типа между ионной и ковалентной связью. Однако важнейшее применение он находит в молекулах или других группах атомов, для которых возможно переменное расположение связей и где свойства молекул не могут бьггь удовлетворительно объяснены при помощи какой-либо одной структурной формулы. Классическим примером молекул такого типа является бензол. При условии соблюдения всех требований резонанса возможно рассматривать действительное состояние такой молекулы как результат резонанса между несколькими структурами с различным расположением связей, причем взаимодействие различных структур таково, что энергия резонанса достигает максимума. Экспериментальные доказательства существования резонанса можно суммировать следующим образом  [c.70]

    Хотя присутствие воды в живых организмах делает весьма спорной важность вклада Н-связей в формирование структуры биологических молекул, вместе с тем водой обусловлена связь другого типа — гидрофобная [6]. Гидрофобная связь играет исключительно важную роль, поскольку именно она в значительной мере определяет те реальные формы, которые принимают биологические макромолекулы. Известно, что углеводороды (например, масла) и вода не смешиваются. Некоторые боковые группы белков (см. рис. 1.5) имеют углеводороднуЕО природу. Если молекула примет форму, при которой углеводородные боковые цепи будут вынуждены контактировать с водой, то в результате взаимодействия воды и углеводородов может появиться некая устойчивая конфигурация, однако энергия такой конфигурации не будет минимальной. Обычно же в силу термодинамических причин (см. гл. 2) наиболее предпочтительна именно та конфигурация, которой соответствует минимальная энергия. Все проблемы, связанные с энергией, исчезли бы, если бы белок можно было уложить так, чтобы его углеводородные группы не контактировали с водой. Что касается глобулярных белков, все возрастающее количество экспериментальных данных свидетельствует в пользу эллиптической модели для них, в которой ионные и полярные группы находятся на поверх-носта глобулы, а алкильные боковые цепи уходят внутрь, в противоположную от окружающей воды сторону. Все основные типы связей, участвующих в формировании структуры белковых [c.24]


    Существуют многочисленные попытки описания величин AH°f в рамках той или иной аддитивной схег,1Ы [96—98]. Кроме того, разработаны способы формального учета различных (попарных и более высокого порядка) взаимодействий между несвязанными атомами, с одновременным введением аддитивных инкрементов для ковалентных связей [42, 43]. Во всех подходах такого типа принятые в термохимии расчетные схемы не приводят к представлению о существовании тех же самых формальных типов взаимодействия (индукционный, резонансный и стерический эффекты), которые учитывают при рассмотрении воздействия эффектов заместителей на гиббсовы энергии реакций или активации или на частоты (энергии) спектральных переходов. Исключение составляет лишь схема, основанная на сумме обычных аддитивных групповых вкладов в качестве стандартного аддитивного состояния (см. [91]). Однако из-за нестрогости самого определения групповых вкладов последние оказываются зависимыми от ближайшего окружения и вся дальнейшая процедура выделения взаимодействий не может быть реализована достаточно однозначно. Сказанное относится также к модификации этого подхода с использованием аддитивных инкрементов С—С- и С—Н-связей и так называемых энергий 1,4-взаимодействий [91]. Поскольку последние математически неотличимы от энергий 1,3-взаимодействий, то в качестве исходного стандартного уровня для отсчета других взаимодействий фактически используют известную в термохимии схему Аллена — Скиннера для алканов [42, 43]. Из-за отмеченных нестрогостей в самой своей основе указанный подход оставляет открытым вопрос сколько и каких формальных типов взаимодействий необходимо ввести для вполне последовательного количественного описания величин AHf разных классов соединений. Недостаточно четкое решение получает также проблема о пределах применимости строго развитого формального подхода. [c.56]

    Проблема вращения вокруг связей — проводников сопряжения — исследовалась не только простым методом Хюккеля. Скан-ке [24] разработал параметризацию метода нулевого дифференциального перекрывания для тг-электронов (фактически для метода ППП), которая позволила с хорошей точностью предсказать конформации различных фторзамещенных дифенилов [25]. Как известно, в этом ряду соединений двугранный угол между фенильными кольцами увеличивается при введении заместителей в положения 2 и 6, достигая максимума (70°) для декафтордифенила [20]. Эта тенденция проявляется и в расчете, учитывающем невалентные взаимодействия и -электронную энергию. Подобный подход, но уже с использованием приближения ППДП (см. ниже), был применен Секигава [27] для исследования конформаций нитро-замещенных нафталинов и некоторых других соединений подобного типа. Результаты его расчетов практически не отличаются от результатов, полученных с помошью эмпирического метода, описанного в разделе 5 гл. 3 [28]. [c.293]

    Выражения (2.9) и (2.10) определяют две связанные системы типа Майера — Заупе. При этом среднее ориентирующее поле, в котором находится боковая мезогенная группа, зависит не только от своего параметра порядка через выражение ХИа5а, но и от параметра порядка основной цепи 5в, входящего в выражение для перекрестного взаимодействия (1—х) т5в. Аналогичное влияние боковых групп на потенциал основной цепи осуществляется через зависящее от слагаемое в потенциале С/в. Таким образом, переходы и упорядочение в одной фазе оказываются связанными с аналогичными свойствами второй фазы. Отметим, что существует большое сходство между рассмотренной моделью гребнеобразного полимера и моделью, предложенной Тен Бош [14] для описания поведения полимера в нематических растворителях. В работах Чера и др. [19, 20], содержащих множество экспериментальных данных, гребнеобразные полимеры также рассматриваются как системы из нескольких компонент, соединенных в одной молекуле. Нетрудно рассчитать свободную энергию такой системы и определить возникающие в ней фазы. Соответствующая проблема сводится к совместному решению связанных уравнений для модели Майера — Заупе и червеобразной модели, которое можно получить с помощью теории возмущений и численно [6] или путем графического или асимптотического анализа [7. В то же время качественное поведение системы можно обсудить с помощью относительных значений трех констант взаимодействия Ид, ив и те в связи С конкретными фазовыми диаграммами. Покажем, что в зависимости от выбора величины константы взаимодействия упорядочение в системе будет определяться одной из компонент, в то время как вторая компонента будет следовать за первой тем или иным образом в зависимости от отношения константы взаимодействия внутри данной компоненты к константе перекрестного взаимодействия 0 - [c.28]


Смотреть страницы где упоминается термин Проблема энергий связей и взаимодействий типа 1—3 или: [c.69]    [c.162]    [c.97]    [c.12]   
Смотреть главы в:

Введение в теоретическую органическую химию -> Проблема энергий связей и взаимодействий типа 1—3 или




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь энергия Энергия связи

Энергия взаимодействия

Энергия связи

типы связ



© 2024 chem21.info Реклама на сайте