Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олиго- и полисахариды

    Сам факт, что тип гликозидной связи в полисахаридах является определенным (а-1,4 Р-1,6 и т. д.), указывает, что при ее образовании конфигурация относительно аномерного атома углерода стабильна (по сравнению со свободными сахарами, где циклические а- и р-формы легко превращаются одна в другую). Это дает возможность использовать систематические наименования олиго- и полисахаридов с указанием стереохимии соединения, размера колец и способа их связывания. [c.11]


    Углеводы делятся на моносахариды, олиго- и полисахариды. [c.296]

    Фруктоза в свободном виде встречается редко. В живом организме она может быть в виде эфиров фосфорной кислоты, олиго- и полисахаридов, гликозидов, нуклеиновых кислот и других сложных веществ.  [c.126]

    К О-г л и коз и дам в широком смысле слова относят ие только Г, с неуглеводными агликонами, но и внутр. ангидриды сахаров (внутр. Г,), олиго- и полисахариды. О-Г.-малолетучие кристаллич. или аморфные в-ва. Г. низших спиртов легко раств. в воде, спиртах, не раств. в малополярных орг. р-рителях, Р-римость Г, со сложными агликонами в значит, мере определяется хим. особенностями по- [c.576]

    Олигосахариды и полисахариды являются полимерами (поли-конденсатами), в которых моносахаридные звенья соединены гли-козидными связями, чаще всего по положениям 1,4 или 1,6. Олигосахариды при гидролизе дают несколько молекул моносахаридов, полисахариды — множество таких молекул. Обычно мономерным звеном в природных полимерах служат остатки Д-глюкозы. Большинство других олиго- и полисахаридов, находимых в природе, также построены из моносахаридов С-ряда. Хотя для несложных олигосахаридов можно построить систематические названия, однако обычно используют тривиальные. [c.257]

    Значение сахаров Глюкоза — виноградный сахар (декстроза), содержится в соке растений, крови, является структурным элементом олиго и полисахаридов Ее получают гидролизом крахмала и целлюлозы [c.300]

    Метиловые эфиры широко применялись в классической химии углеводов для установления циклического строения сахаров (см. разд. 26.1.2) и выяснения строения многих олиго- и полисахаридов. Эти эфиры устойчивы в самых различных условиях, однако для синтетических целей это является недостатком из-за отсутствия доступных способов удаления метильных групп. [c.165]

    В монографию включены главы, касающиеся биохимии моно- и полисахаридов, а также глава о смешанных биополимерах, в состав которых входят олиго- и полисахариды. Эти главы изложены химическим языком с использованием современной биохимической терминологии, что делает их особенно ценными для биохимиков, желающих познакомиться с химией углеводов. [c.2]

    Распространение в природе. Будучи чрезвычайно реакционноспособными соединениями, моносахариды редко встречаются в свободном виде. В живом организме они существуют либо в виде своих производных, чаще всего — в виде эфиров фосфорной кислоты, либо входят в состав более сложных веществ — гликозидов, олиго- и полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот и т. п. Исключение составляют D-глюкоза, найденная в свободном виде в крови млекопитающих, соке растений и в других источниках, и некоторые кетозы. [c.14]


    Избирательное окисление а-гликольной группировки. Для избирательного окисления а-гликольной группировки используются йодная кислота и тетраацетат свинца. Эти окислители чрезвычайно широко применяются для установления строения моно-, олиго- и полисахаридов, а также в препаративных целях и имеют в химии углеводов значение, которое трудно переоценить. [c.86]

    Метиловые эфиры. Метиловые эфиры моносахаридов представляют значительный интерес по двум причинам. Во-первых, некоторые частично метилированные сахара широко распространены в природе и входят в состав многих полисахаридов, сердечных гликозидов, антибиотиков н других природных соединений. Во-вторых, метиловые эфиры сахаров сыграли и продолжают играть исключительно важную роль при установлении строения углеводов, особенно олиго- и полисахаридов (см. стр. 433, 494). Большая часть метиловых эфиров различных моносахаридов была синтезирована в тридцатые годы нашего столетия именно в связи с установлением строения полисахаридов, а к настоящему времени известно уже большинство метиловых эфиров важнейших моносахаридов. [c.159]

    Распространение в природе. Дезоксисахара широко распространены в природе. Они редко встречаются в свободном виде и обычно являются компонентами гликозидов, олиго- и полисахаридов. [c.253]

    За исключением D-глюкозы и D-фруктозы, свободные моносахариды встречаются в природных объектах очень редко и в очень малых количествах. Обычно моносахариды находят лишь в продуктах гидролиза более сложных соединений — олиго- и полисахаридов. [c.383]

    Наиболее обычным объектом для анализа в химии углеводов служат смеси свободных моносахаридов, получаемые как непосредственно из природных источников, так и при гидролизе гликозидов, олиго- и полисахаридов. Другим важным классом соединений, разделение, количественное определение и идентификация которых составляют основу установления строения олиго- и полимерных углеводных цепей методом метилирования, являются полностью или частично метилированные моносахариды. Кроме того, в синтетической химии углеводов приходится встречаться с разделением смесей и идентификацией самых разнообразных производных моносахаридов. Ниже коротко рассматриваются некоторые наиболее употребительные методы анализа углеводов. [c.409]

    Практически чаще всего приходится идентифицировать свободные моносахариды, полученные синтетическим путем, выделенные из биологических объектов или образовавшиеся в результате гидролиза гликозидов, олиго- и полисахаридов, а также метилированные моносахариды, образующиеся в процессе установления строения разнообразных углеводов методом метилирования. Поскольку получение тех и других соединений в кристаллическом состоянии сопряжено с рядом трудностей, для идентификации очень часто применяют превращение их в производные, которые получаются с хорошими выходами и легко кристаллизуются желательно, чтобы моносахарид можно было регенерировать из производного без изменений в его структуре. При работе с малыми количествами веществ важное значение имеет увеличение молекулярного веса вещества, достигаемое введением в молекулу моносахарида тяжелых заместителей. [c.413]

    К олиго- и полисахаридам относятся соединения, молекулы которых построены из остатков моносахаридов, соединенных О-гликозидными связями. Разграничение олигосахаридов и полисахаридов не может быть сделано строго, поскольку природные углеводы представлены почти непрерывным рядом соединений от моносахаридов до высших полисахаридов. Однако с методической точки зрения целесообразно считать олигосахаридами соединения, содержащие до 8— 10 моносахаридных звеньев, а к полисахаридам относить более высокомолекулярные сахара. Внутри класса олигосахаридов различают в зависимости от числа моносахаридных звеньев дисахариды, трисахариды, тетрасахариды и т. д. Олигосахаридами в принятой выше несколько условной классификации можно считать соединения, при изучении которых могут быть применены обычные логические подходы и методические приемы органической химии. Так, олигосахариды, как правило, можно выделить в индивидуальном состоянии и для них возможно установление однозначной структурной формулы, в том смысле, как это принято в органической химии. Для полисахаридов, напротив, понятие индивидуального вещества заменяется понятием смеси полимергомологов с однотипной структурой макромолекул. Поэтому и структурные формулы полисахаридов носят несколько условный характер, отвечающий условности соответствующего понятия в химии высокомолекулярных соединений. Отсюда вытекает и ряд различий в методах исследования обоих классов углеводов для олигосахаридов характерны методы классической органической химии, для полисахаридов — методы химии высокомолекулярных соединений. [c.419]

    В книге рассмотрены механизм, кинетика и катализаторы получения многоатомных спиртов (глицерина, гликолей, ксилита, сорбита, маннита) гидрированием моносахарида , а также гидролитическим гидрированием олиго- и полисахаридов растительного происхождения. Описаны- конструкции применяемого оборудования, приводятся технологические показатели процессов, характеристики сырья и получаемых продуктов. Охарактеризованы основные пути, использотания многоатомных спиртов в химической, пищевой, медицинской промышленности. [c.2]


    Сахара, оптическая изомерия. Сахара, их распространение в природе и биологическая роль. Понятие о фотосинтезе. Классификация сахаров простые и сложные (олиго- и полисахариды) тстрозы, пентозы, гексозы, гептозы и т. д. альдозы и кетозы. Пространственная конфигурация моносахаридов D- и -ряды. Химические свойства моносахаридов. Окисление до -оновых и уроновых кислот, восстановление, удлинение цепи действием синилгной кислоты, укорачивание цени альдоз. Качественные реакции иа сахара. Инверсия сахаров. Замещение атомов водорода п гидроксильных группах получение сахаратов, сложных эфиров моноз, их простых эфиров, глико шдон. [c.248]

    В молекулах линейных олиго- и полисахаридов два концевых мономерных остатка обладают, как правило, различными свойствами. Один из них называют восстанавливающим (редуцирующим), другой — невосстанавливающим. Концевой моносахаридный остаток с незамещенным аномерным атомом углерода называют восстанавливающим концом. Остаток, аномерный атом углерода которого присоединен к полисахаридной цепи и участвует в образовании гликозидной связи,— невосстанавливающим концом. [c.11]

    Другие моносахариды практически почти не встречаются в свободном виде в природе, но входят в состав важных олиго- и полисахаридов. Это ксилоза ( древесный сахар ) — составная часть полисахарида ксилапа, сопровождающего целлюлозу в соломе, кукурузных стеблях, хлопке арабиноза, встречающаяся в растениях в виде полисахарида арабана, входящего в состав вишневого клея, аравийской камеди (отсюда и название арабиноза) рибоза, и.меющая исключительно биологическое значение из-за своей связи с нуклеиновыми кислотами манноза — составная часть полисахаридов май-нанов галактоза, входящая в состав дисахарида лактозы — молочного сахара, содержащегося в молоке млекогштающих. [c.303]

    Исследования Д. Бейли и Д. Френча показали, что р-амилаза осуществляет множественную атаку олиго- и полисахаридов, расщепляя за время существова-ния одного фёрмент-субстратного комплекса четыре глюкозидные связи в амилозе, и образует четыре молекулы мальтозы. [c.172]

    ГЛЮКОЗА (декстроза, виноградный сахар) iHi206, моносахарид сладкого вк,уса (структурную ф-лу см, в ст, Мута-ротация). В природе распростр, D-Г, для ее а- и -аноме-ров Гпл 146 и 148—150 °С, [ ]d +112 и +18,7° соотв,, равновесное [а]о +52,7° раств, в воде (в 100 мл 82 г при 25 С и 154 г при 15 °С), Содержится в соке растений и в кровн структурный фрагмент мн, олиго- и полисахаридов. Гл. источник энергии для большинства организмов, Получ, кислотным или ферментативным гидролизом крахмала или целлюлозы. Сырье в произ-ве витамина С, глюконата Са входит в состав напитков и конд, изделий питат. в-во и компонент кровезаменителей в медицине, [c.139]

    Итак, синтез природных углеводных структур и их ближайших аналогов. В первую очередь, это синтез моносахаридов, природных гликозидов, олигосахаридов и полисахаридов. Олиго- и полисахариды, как мы помним, построены из остатков моносахаридов, соединенных 0-гликозидными связями. В природных гликозидах тем же типом связи моносахаридные остатки соединены с неуглеводными аглнконами. Поэтому в синтезе олиго- и полисахаридов или гликозидов задача химика сводится в конечном итоге к тому, чтобы соединить моносахаридные остатки друг с другом или с агликоном гликозидными связями. [c.118]

    Бочков А. Ф., Афанасьев В. А., Заиков Г. Е. Образование и расщепление гликозидных связей. М. Наука, 1978, 179 с. Монография по химии О- и N-гликозидной связи. Подробно рассмотрены методы синтеза гликозидов, олиго- и полисахаридов. В связи с синтезом олигосахаридов проанализированы основные методы избирательной защиты функциональных групп в сахарах. [c.173]

    Устаносление строения углеводного остатка тритерпеновых и стероидных сапонинов осуществляется с помощью методов структурной химии олиго- и полисахаридов. Сюда входит 1) определение качественного и количественного состава моносахаридов 2) установление последовательности моносахаридных остатков в углеводной цепи 3) определение положения гликозидных связей в моносахаридных остатках 4) определение размеров оксидных циклов моносахаридов 5) установление конфигурации гликозидных центров, [c.47]

    АМИЛАЗЫ (от лат. amylum - крахмал), ферменты класса гидролаз, катализирующие гидролиз крахмала, гликогена и др. родственных олиго- и полисахаридов, гл. обр. по [c.128]

    А. входят в состав мн. углеводсодержащих биополимеров (олиго- и полисахаридов, липополисахаридов, гликолипидов, гликопептидов, гликопротеинов и др.), а также антибиотиков. Важнейшие представители-глюкозамин и галак-тозамин. Их N-aцeтилиpoвaнныe производные входят [c.144]

    БИОПОЛИМЕРЫ (от греч bios-жизнь и polymeres-состоящий из многих частей, многообразный), прир высокомол соединения, являющиеся структурной основой всех живых организмов Обеспечивают их нормальную жизнедеятельность, выполняя разнообразные биол. функции К Б относятся белки, нуклеиновые кислоты, полисахариды Известны также смешанные Б, напр липопротеины (комплексы, содержащие белки и липиды), гликопротеины (соед, в молекулах к-рых олиго- или полисахаридные цепи ковалентно связаны с пептидными цепями), липополисахариды (соед., молекулы к-рых построены из липидов, олиго-и полисахаридов) [c.289]

    Наиб, группу ферментов, расщепляющих гликозидные связи, представляют те, к-рые катализируют гидролиз олиго- и полисахаридов, напр, амилазы, лизоцим и нейрамини-даза. Многие Г. этого подкласса специфичны к положению гликозидной связи и к конфигурации аномерного атома С углевода. [c.561]

    ГЛИКОЗИД-ГИДРОЛАЗЫ (гликозндазы, карбогид-разы), ферменты класса гидролаз, катализирующие гидролиз О-гликозидных связей в гликозидах, олиго- и полисахаридах, гликолипидах, гликопротеннах и др. глнкокоиъюга-тах. Г. катализируют также обратные р-ции. Эти ферменты абсолютно специфичны к конфигурации как расщепляемой, так и синтезируемой гликозидной связи. Нек-рые типы Г. катализируют перенос остатка углевода от гликозида, олиго- или полисахарида к соед., содержащему группу ОН (трансгликозилирование). [c.575]

    ГЛИКОЗИЛТРАНСФЕРАЗЫ, группа ферментов класса трансфераз, катализирующих перенос гликозильных групп на орто- и пирофосфорную к-ты, олиго- и полисахариды, Н2О или др. акцептор. Делятся на гексозил- и пентозил-трансферазы. Обладают строгой субстратной специфичностью по отношению к донору углевода и к конфигурации синтезируемой связи. [c.578]

    Перенос гликозильных групп на олиго- и полисахариды осуществляется с использованием в кач-ве доноров нуклео-зиддифосфатсахаров. Напр., в образовании а-1- 4-гликозидной связи при синтезе гликогена и крахмала под действием гликогенсинтазы происходит перенос глюкозы с уридиндифосфатглюкозы. Этот фермент может фос-форилироваться, превращаясь в менее активную форму, к-рая активируется глюкозо-6-фосфатом. [c.578]

    Осн. пути метаболизма D-Г. 1) гликолиз и аэробное окисление до Oj и HjO, в результате к-рых образуются АТФ и др. макроэргич. соединения 2) синтез олиго- и полисахаридов 3) превращение в пентозы и др. простые сахара в пентозофосфатном цикле. О биосинтезе D-Г. см. Глюконеогенез. [c.589]

    Полуацетальный (гликозвдный) гидроксил циклич. форм моносахаридов резко отличается от прочих групп ОН моносахарида значительно большей склонностью к р-циям нуклеоф. замещения. Такие р-ции приводят к образованию глико-зидов (остаток нуклеофила в гликозиде - напр, спирта, меркаптана - носит назв. агликон). В тех случаях, когда агликоном служит др. молекула моносахарида, образуются олиго- и полисахариды. При этом каждый остаток моносахарида может в принципе иметь пиранозную или фуранозную форму. От или р-конфигурацию гликозидного центра и быть связанным с любой из гидроксильных фупп соседнего моносахарида. Поэтому число разл. по строению полимерных молекул, к-рые теоретически можно построить даже из остатков только одного моносахарида, представляет собой аст-рономич. величину. [c.23]

    За исключением В-шюкозы и В-фруктозы своб. моносахариды встречаются в природе редко. Обычно они входят в состав разнообразных гликозидов, олиго- и полисахаридов и м. б. получены из них после кислотного гидролиза. Разработаны многочисл. методы хим. синтеза редких моносахаридов исходя из более доступных. [c.23]

    Гликозиды с пятичленным кольцом называют фураиозидами, с шестичленным кольцом — пиранозидами. Углеводную часть гликозида называют глшоном, спиртовую (вообще не-углеводную) часть — агликоном. В приведенном выше примере гликоном является О-глюкоза, агликоном — метанол. Звенья, образующие олиго- и полисахариды, могут быть связаны друг с другом глико-зидными связями рассмотренного выше типа, причем роль агли-кона также играет углевод. [c.242]

    Таким образом, растения при фотосинтезе запасают энергию и связывают углерод в виде D-фруктозо-б-фосфата, из которого затем синтезируют сахарозу и крахмал. Сахароза хорошо растворяется в воде и транспортируется в различные части растения, крахмал используется в качестве резервного полисахарида. Сахароза и крахмал легко гидролизуются, образующиеся при этом D-глюкоза и D-фруктоза служат исходньпки материалами для биосинтеза других моно-, олиго- и полисахаридов. D-Глюкоза и D-фруктоза подвергаются также расщеплению и окислению с выделением необходимой для жизнедеятельности растения энергии и образованием промежуточных соединений для последующего биосинтеза (ацетилкофермент А, D-эpитpoзo-4-фo фaт, фосфоенолпировиноградная кислота, рибозо-5-фосфат). На основе этих веществ растения синтезируют многочисленные представители различных классов соединений (лигнины, липиды, таннины, нуклеотиды, нуклеиновые кислоты, аминокислоты, терпены, пигменты, алкалоиды, фитогормоны и т.д.). Растительная биомасса является обширным возобновляемым сырьевым источником для производства различных органических материалов и соединений. [c.341]

    Состав гидрофильных экстрактивных веществ весьма разнообразен. К ним относятся различные фенольные соединения, моносахариды, олиго- и полисахариды, полиурониды, гликозиды, белки, растворимые соли и др. При последовательном экстрагировании древесины растворителями с увеличивающейся полярностью можно отделить фенольные соединения от остальных гидрофильных компонентов (см. рис. 14.2). Водорастворимые полисахариды и полиурониды древесины уже рассматривались в главе 11. [c.519]

    Классификация и номенклатура. Полиоксикарбонильные соединения — полиоксиальдегнды или полиоксикетоны — называются моносахаридами (название монозы в настоящее время употребляется редко). По сравнению с другими классами углеводов моносахариды представляют собой наиболее простой и изученный класс соединений. Более сложные углеводы — олиго- и полисахариды — построены из моносахаридов, являющихся мономерами. Поэтому химия моносахаридов имеет для всой химии углеводов основополагающее значение. [c.13]

    Наряду с олиго- и полисахаридами в растительных и животных организмах широко распространены представители обширного и многооГраз-ного класса О-гликозидов с неуглеводными агликонами, которые имеют важное практическое значение и подвергаются весьма интенсивному изучению. Химия этих соединений включает в себя элементы химии углеводов и агликоновых компонент и представляет собой обширный самостоятельный раздел биоорганической химии, рассмотрение которого не входит в задачи настоящей книги. [c.205]

    Из О-гликозидов кетоз известны в основном низшие гликозиды и природные олиго- и полисахариды, содержащие остаток р-Б-фруктофу-Ранозы (см. гл. 15 и 20). Эти соединения, как правило, легко гидролизуют- [c.245]


Библиография для Олиго- и полисахариды: [c.209]   
Смотреть страницы где упоминается термин Олиго- и полисахариды: [c.10]    [c.633]    [c.148]    [c.76]    [c.138]    [c.139]    [c.311]    [c.51]    [c.331]   
Смотреть главы в:

Стереохимия углеводов -> Олиго- и полисахариды




ПОИСК





Смотрите так же термины и статьи:

Полисахариды



© 2025 chem21.info Реклама на сайте