Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические производства Электрохимические процессы

    Книга составлена в соответствии с учебной программой курса технологии электрохимических производств и предназначается в качестве учебного пособия для студентов химико-технологических вузов. Вместе с тем, она может представить интерес для инженер- но-технических работников химической, металлургической, электротехнической и других отраслей промышленности, связанных с электрохимическими процессами, [c.3]


    В электрохимических производствах химические процессы происходят под действием постоянного электрического тока на раствор или расплав электролита. Электрохимические процессы широко применяются для производства хлора, щелочей, водорода, кислорода, металлов, неорганических окислителей, а также для получения декоративных и защитных покрытий металлов, для рафинирования металлов и др. [c.78]

    Электрохимические производства по сравнению с химическими обладают тем преимуществом, что в них роль окислителя или восстановителя выполняет электрический ток и таким образом исключается необходимость введения дополнительных реагентов. С этой точки зрения электрохимические процессы могут быть с успехом использованы для создания малоотходных технологических процессов. Примером таких процессов может служить электролиз воды, получение хлора и щелочи диафрагмен-ным нли мембранным методами. Следует отметить, что проблема создания малоотходных производств стала особенно острой лишь в последние годы. Пока работы в этом направлении только развертываются, хотя и имеется возможность снизить отходы в уже действующих производствах за счет применения электрохимических методов. Так, например, в анилинокрасочной промышленности для восстановления ароматических нитросоединений используют насыпные железные стружки в соляной кислоте. В результате реакции образуются отходы хлорида железа, идущего в отвал. Применение электролиза позволит полностью исключить образование этого нежелательного отхода. [c.230]

    При подготовке второго издания Сборника расширена его целенаправленность с тем, чтобы он мог служить также и пособием по технологическому проектированию. Для этого в книгу включены примеры технологических расчетов, которые могут быть использованы как типовые при проектировании. Расширен диапазон электрохимических производств и параметров, охватываемых расчетами. Во вновь введенных примерах расчетов значительное внимание уделено тем электрохимическим параметрам, расчеты которых отсутствуют или проводятся не совсем правильно. Сделана попытка унификации отдельных методов расчета для разных отраслей электрохимических производств. Примеры и задачи, перенесенные из первого издания, переработаны в соответствии с изменившимися конструкциями аппаратов и технологическими параметрами процессов. Структура сборника сохранена прежней —в каждой главе, охватывающей соответствующую отрасль электрохимических производств, приводятся примеры основных расчетов, а также даны задачи для самостоятельного рещения. [c.3]


    Вместе с тем электрохимическим методам получения веществ присущи и определенные недостатки электрохимические процессы требуют обычно большого расхода электроэнергии. Однако по мере создания в СССР мощной энергетической базы и единой энергетической системы вопросы энергоемкости производства становятся в нашей стране все менее существенны. Вторым недостатком электрохимических процессов является их относительно невысокая производительность и, как результат, большие капитальные затраты на здания, оборудование и т. д. В связи с этим одним из главных путей совершенствования электрохимических процессов является их интенсификация путем повышения плотности тока или, в более общем случае, путем повышения амперной нагрузки на единицу площади цеха электролиза. [c.7]

    Технология электрохимических производств рассматривает процессы, в которых основные реакции проходят в обстановке непосредственного перехода электрической энергии в химическую без промежуточного превращения энергии в тепло. Для этого созданы особые технологические методы и аппаратура, основанные на теоретической электрохимии и отличающиеся от методов в других областях химической технологии. Они и рассматриваются в настоящем курсе. [c.5]

    Наконец, наиболее важную и многообразную группу составляют химические процессы, связанные с изменением химического состава и свойств вещества, скорость протекания которых определяется законами химической кинетики. К сожалению, до сих пор еще не удалось создать строгую научную классификацию этих процессов. Это оказалось делом очень трудным. Часть химических процессов классифицируется по принципу получаемых продуктов или отраслям производства (минеральные кислоты, щелочи, соли, минеральные удобрения, металлы, силикаты, высокомолекулярные соединения, пластические массы, каучуки и резины, химические волокна, целлюлоза и бумага, органические красители, клеи, лаки и краски, сахара, спирты, жиры и т. п.), часть — по принципу общности процессов производства (электрохимические процессы, электротермические, микробиологический синтез, процессы брожения и т. п.), часть — по принципу общности исходного сырья (химическая технология нефти, синтезы на основе окиси углерода, олефиновых углеводородов, ацетилена, ароматических углеводородов и т. п.). [c.137]

    Несмотря на большое разнообразие химических производств, большинство процессов химической переработки сырья и полупродуктов производства осуществляется а) методами термической обработки исходных материалов (обжиг, плавка, крекинг, термическое разложение и т. п.), б) каталитическим путем (синтез, контактное окисление и т. п.), в) электрохимическим путем (электролиз растворов и расплавленных солей), г) физико-химическими методами (выщелачивание и кристаллизация, сжижение и ректификация, экстрагирование и перегонка и т. п.), д) сочетанием одного из указанных методов с другим (каталитический крекинг, гидрирование жидкого топлива и полимеризация и т. п.). [c.263]

    Постоянный электрический ток используют в электрохимических производствах как для процессов разложения веществ, так и для процессов синтеза [9], при этом необходимо соблюдение определенных условий. Например, разложение воды начинается при напряжении [c.78]

    Специалисты считают, что комбинирование термохимических и электрохимических процессов — наиболее перспективное направление крупномасштабного производства водорода из воды. [c.83]

    Основным недостатком электрохимических процессов является их высокая энергоемкость, которая приводит к значительной доле затрат на энергию в себестоимости продукции. Например, энергоемкость производства алюминия достигает 2-10 кВт -ч/т, тогда как в производстве серной кислоты она не превышает 100 кВт -ч/т продукции. [c.330]

    Электрохимическое производство гидроксида натрия и хлора из водного раствора хлорида натрия представляет собой единое комплексное производство, включаюш ее следующ ие процессы  [c.348]

    Подземный рассол, получаемый в рассольных скважинах, перекачивают из специальных сборников на очистку. Твердую товарную соль хранят на складе соли, где ее растворяют и рассол также подают на очистку. Из цеха электролиза электролитический щелок перекачивают в цех выпарки и в виде 42—50% -ного раствора передают на склад. Влажный хлор из электролизеров поступает в отделение сушки и затем компрессорами перекачивается цехам-потребителям. Водород, являющийся побочным продуктом процесса, после охлаждения водой подается потребителям. Постоянный ток для электролиза подводят к электролизерам с преобразовательной подстанции, расположенной на территории предприятия. Карие. 21.7 приведена схема подобного электрохимического производства. [c.349]


    Но вот настало время электрохимических и электротермических процессов. Для электролизных ванн алюминиевых заводов, для различных электрометаллургических печей потребовались электроды. Их делали, да и сейчас зачастую делают из графита. Но, во-первых, всех потребностей природным графитом не удовлетворить, а, во-вторых, иногда графитовые электроды не вполне соответствуют требованиям технологии производства металлов. В связи с этим появились электроды из нефтяного кокса. Они быстро завоевали большую популярность, особенно в цветной металлургии. [c.85]

    Курс Технология электрохимических производств , читаемый на соответствующих кафедрах технологических, химико-технологических и политехнических вузов, включает ряд разделов, в которых рассматриваются процессы электролиза водных растворов без выделения и с выделением металлов, электрохимического синтеза неорганических и органических веществ, электролиза расплавов, а также основы производства источников электрической энергии. Естественно, что подробное изложение этих вопросов в книге ограниченного объема невозможно, да и не требуется по учебному плану. Задачей курса является общее ознакомление студентов с процессами превращения химической энергии в электрическую (в производстве химических источников тока) и с возможными путями использования электролиза для получения различных продуктов. [c.7]

    К началу 1941 г. мощность электростанций в СССР возросла в И раз, а выработка электрической энергии — в 25 раз. Это-и явилось основной предпосылкой для создания в СССР мощной электрохимической промышленности. За эти годы возник ряд новых крупных электрохимических производств алюминия, магния, натрия и некоторых других легких и редких металлов, цинка, кадмия марганца, а также водорода, кислорода, перекисных соединений и т. д., получили развитие процессы рафинирования свинца, никеля, серебра и других металлов, были значительно усовершенствованы существовавшие в дореволюционной России процессы рафинирования меди, получения хлора, производство свинцовых аккумуляторов. [c.10]

    Другим серьезным недостатком электрохимического метода является относительно малая скорость некоторых электрохимических процессов, что вызывает необходимость выделения больших производственных площадей и крупных затрат на оборудование. В связи с этим одним из актуальных вопросов в ряде электрохимических производств является укрупнение отдельных аппаратов — [c.11]

    Пути интенсификации хлорного производства. На хлорном заводе более половины капитальных вложений приходится на отделение электролиза, поэтому интенсификация электрохимического процесса имеет важное значение. [c.157]

    Из других электрохимических процессов, нашедших промышленное применение в небольшом масштабе, следует отметить производство феррицианида калия КзРе(СЫ)б, используемой для при- [c.212]

    Гальванотехника — один из наиболее распространенных видов электрохимического производства, который включает процессы нанесения покрытий в виде металлов и сплавов с целью защиты изделий от коррозии, защитно-декоративной отделки, повыщения сопротивления механическому износу и поверхностной твердости, сообщения антифрикционных свойств, отражательной способности (гальваностегия), а также для изготовления и размножения металлических копий (гальванопластика), [c.332]

    В технологии электрохимических производств перенапряжение может оказаться как полезным, так и нежелательным. Например, при электролизе воды (растворов щелочи) для получения водорода катодное перенапряжение приводит к бесполезной затрате электрической работы. Если же цель технологического процесса — выделение металла, но одновременно в качестве побочного процесса может идти выделение водорода, то большое перенапряжение водорода полезно, так как оно, затрудняя выделение водорода, снижает бесполезный расход энергии на этот побочный процесс. Например, при электролизе щелочных растворов комплексных солей цинка на катоде должны разряжаться ионы водорода, а не цинка, так как равновесный потенциал водородного электрода менее отрицателен, чем цинкового. Но ионы гидроксония разряжаются на цинке с большим перенапряжением, т. е. при потенциале, гораздо более отрицательном, чем потенциал цинка. Поэтому из раствора при электролизе выделяется цинк. [c.297]

    Электрохимические методы анализа объединяют большую группу методов, использующих закономерности электрохимических явлений и процессов. Такие преимущества этих методов, как быстрота, возможность проведения анализа в небольшом объеме раствора или расплава, возможность автоматизации, делают электрохимические методы анализа особенно привлекательными при осуществлении контроля за производством. [c.13]

    Интенсификация электрохимических процессов и создание новых производств невозможны в настоящее время без глубокого изучения теоретических проблем электрохимии. [c.5]

    Задача исследователей и технологов, таким образом, состоит в том, чтобы всемерно совершенствовать методы электролитических производств на основе всестороннего и глубокого теоретического изучения и обоснования электрохимических процессов. [c.7]

    Электрохимическая промышленность с каждым годом приобретает все возрастающее значение в народном хозяйстве. Постройка мощных электростанций создает благоприятные перспективы для дальнейшего развития электрохимической технологии. В настоящее время получают техническое осуществление многие новые электрохимические процессы (электрохимическое выделение титана, циркония, бериллия и др. получение сверхчистых металлов производство окислителей, фтора и Др.). [c.3]

    Особым разделом промышленной электрохимии является производство гальванических элементов и аккумуляторов, в которых за счет электрохимических процессов получается электрическая энергия. [c.5]

    Поэтому мы здесь не будем останавливаться на всем многообразии расчетов производственных процессов в химической промышленности. Рассмотрим лишь типовые и наиболее распространенные в промышленной практике материальные и тепловые расчеты производственных процессов, как то а) термическую обработку некоторых видов органического и минерального сырья (газификация и коксование угля, газификация торфа, обжиг железного колчедана, электротермическое получение карбида кальция, ферросилиция и окиси азота), б) каталитические процессы синтеза и окисления аммиака, конверсии окиси углерода и окисления сернистого газа, в) электрохимические производства, г) один из наиболее слолсных физико-химических методов промышленной переработки сырья —сжижение и ректификацию газовых смесей в( частности воздуха). Приведенные расчеты производственных процессов охватывают собой значительную и наиболее сложную и важную часть процессов химической технологии. Освоение этих расчетов дает возможность технологу методически правильно подойти к расчету материального и теплового баланса почти любого химического производства. [c.265]

    В химической промышленности платина применяется для изго-топления коррозиониостойких детален аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство надсерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от нрнмссей кислорода и в ряде других процессов. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперспом состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода (см. стр. 281). [c.698]

    Вероятным является широкое использование титана для конденсаторов в производстве азотной кислоты, в гальванических ваннах для хромирования с сернокислотным катализатором и для анодов при электрохимических процессах. Так, фирма Wolverine Tube o. выпускает трубки с внешней ребристой поверхностью пз титана для теплообменных аппаратов. [c.217]

    В пособии отражены разделы, которые составляют основное содержание курса теоретической электрохимии. Опыт преподавания этого кур са в Харьковском ордена Ленина политехническом институте им. В. И. Ленина подсказал авторам, что для успешного освоения предмета необходимо понимать и находить взаимосвязь между теоретическими положениями, охватывающими совокупность явлений и закономерностей, имеющих место в равновесных и неравновесных электрохимических системах, и их практической реали-заи.ией Б многообразных технологических процессах электрохимических производств. [c.3]

    В химической промышленности платина применяется для изготовления коррозионностойких деталей аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство пероксодисерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от примесей кислорода и в ряде других процессов. Платиновые и платино-рениевые ката чизаторы, используются при получении высокооктановых бензинов и мономеров для производства синтетического каучука и других полимерных материалов. Сплавы с родием и пал.падием применяются для конверсии в безвредные вещества токсичных компонентов выхлопных газов автомобилей. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперсном состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода. [c.531]

    Большую отрасль современной химической промышленности составляет электросинтез неорганических и органических соединений. При помощи электрохимических методов могут быть получены водород, кислород, персульфаты, перхлораты, хлор, фтор, щелочи, ади-подинитрил, фармацевтические препараты, перфторированные органические соединения и ряд других веществ, которые или используются затем непосредственно, или являются промежуточными в процессе приготовления различных продуктов. Электролиз воды, при помощи которого разделяются изотоны водорода, используется в процессе получения тяжелой воды. Производство таких важных полимеров, как полихлорвинил и перхлорвинил, в значительной степени базируется на электрохимическом производстве хлора. Промышленные методы обогащения атомного горючего были бы неосуществимы без гексафторида урана, для получения которого необходим продукт электролиза — свободный фтор. Многие процессы, которые осуществляются обычным химическим путем, могут быть реализованы электрохимическими методами, и критерием при выборе того или иного пути служат экономические соображения. [c.12]

    Многие практически важные электрохимические процессы (производство алюминия, магния, щелочных металлов, свободных галогенов, рафинирование металлов и др.) осуществляют в расплавах электролитов. Расплавы электролитов используют также в ядерной технике и в топливных элементах. Основными составными частями расплавленных электролитов являются ионы, на что указывает прежде всего высокая электропроводность расплавов. Поэтому расплавленные электролиты называют ионными жидкостями. Ионные жидкости можно разбить на два класса 1) расплавы солей и их смесей 2) расплавы окислов и их смесей. Этот класс ионных жидкостей приготавливают смещением окислов неметаллов (SiOj, [c.89]

    Буферные смеси имеют большое практическое применение в аналитической химии, в технологии электрохимических производств при электроосаждении металлов, т. е. везде, где почему-либо возникает необходимость сохранять постоянной концентрацию водородных ионов. Особо ценными буферными смесями являются смеси бикарбоната и карбоната натрия, а также NaHaPO и Na2HP04, играющие большую роль в регулировании процессов, протекающих в живых организмах. [c.84]

    Из электрохимических производств, основанных на использовании электролиза для проведения окислительных или восстановительных реакций, можно назвать электрохимическое окисление Na l в Na lOa производство перхлоратов окислением хлоратов электрохимическое получение хлорной кислоты при обессоливании морской и минерализованных вод электролизным методом получение диоксида хлора и т. д. В органической химии процессы электролиза используются в реакциях катодного восстановления нитросоединений, иминов, имидоэфиров, альдегидов и кетонов, карбоновых кислот, сложных эфиров, а также в реакциях анодного окисления жирных кислот и их солей, ненасыщенных кислот ароматического ряда, ацетилирова-ния, алкилирования и др. [c.357]

    Роль таких химических источников тока в современной технике чрезвычайно велика и разнообразна. Все современные виды механизированного транспорта снабжаются надежными аккумуляторными батареями. Различные измерительные приборы и сигнализирующие устройства-оснащаются первичными гальваническими элементами. Мощные аккумуляторы обеспечивают движение подводных лодок в погруженном состоянии. На электростанциях аккумуляторы используют при освещении и работе приборов в аварийных условиях. Их применяют и как буферные устройства в часы повышенного расхода энергии. Из всего сказанного выше видно чрезвычайное разнообразие электрохимических производств, резко различающихся как по характеру готовой продукции, так и по используемому сь1рью. Признаком, объединяющим различные электрохимические процессы, является метод производства, использующий электрохимические реакции, протекающие на электродах. [c.5]

    Начатые с самого возникновения Советского государства работы по электрификации страны и общий бурный рост промышленности способствовали распространению электрохимических процессов. Ряд производств, не существовавших ранее, был организован в крупнейших масштабах. Возникли мощные алюминиейые и магниевые заводы, организовано получение натрий и некоторых других легких и редких металлов, налажена рафинировка никеля, [c.5]

    В каждой главе сборника, охватывающей соответствующую отрасль электрохимических производств, приводятся примеры 0С1ЮВНЫХ расчетов, а также даны задачи для самостоятельного решения. Включение некоторых расчетов по неэлектрохимическим процессам (например, химической металлизации) обусловлено протеканием таких процессов по электрохимическому механизму, а также тем, что этими процессами по традиции занимаются электрохимики. Сохранение принятого подразделения электрохимических производств на пять больших групп (столько и глав расчетов в сборнике) заставило включить примеры и задачи по новым электрохимическим процессам, не подходящим к этой классификации (например, электрохимическая регенерация растворов), в главы, более близкие по сущности процессов. [c.3]


Смотреть страницы где упоминается термин Электрохимические производства Электрохимические процессы: [c.96]    [c.319]    [c.207]    [c.202]    [c.98]    [c.202]    [c.66]   
Смотреть главы в:

Общая химическая технология -> Электрохимические производства Электрохимические процессы




ПОИСК





Смотрите так же термины и статьи:

Применение электрохимических процессов для производства химических продуктов

Производство процесса

Процесс электрохимический

Схемы основных процессов электрохимического производства хлора и каустической соды

ЭЛЕКТРОХИМИЧЕСКИЕ ПРОИЗВОДСТВА БЕЗ ВЫДЕЛЕНИЯ МЕТАЛЛОВ Электрокинетические процессы

Электрохимические характеристики процесса разряда-ионизации элементов и условия анализа некоторых материалов методом инверсионной вольтамперометрии (реактивы и вещества высокой степени чистоты, материалы металлургического производства, природные и сточные воды, жидкие и твердые продукты питания)



© 2025 chem21.info Реклама на сайте