Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты белков. Пептиды

    Единственная химическая реакция, которая здесь будет рассматриваться, —это гидролиз. Он может осуществляться как ферментативным, так и химическим путем. Горячая разбавленная минеральная кислота медленно расщепляет амидные связи с образованием с учайных фрагментов, в конечном итоге приводя к простым аминокислотам. Контролируемый кислотный гидролиз разрушает белок с образованием смеси пептидов. Возможен также ферментативный гидролиз протеолитические ферменты очень разнообразны по своему специфическому действию. Некоторые из них, такие, как папаин или фицин, фактически неспецифичны и расщепляют белки до свободных аминокислот, в то время как другие — трипсин, химотрипсин и пепсин— гидролизуют только особые связи в белковых молекулах (ср. мальтаза, эмульсин и т. д., разд. 17.6 и 17.7). Так, пепсин расщепляет амидную связь между карбоксильной группой ди-карбоновой ь-аминокислоты и аминогруппой ароматической ь-аминокислоты при условии, что вторая карбоксильная кислотная группа дикарбоновой аминокислоты не связана. Химотрипсин менее специфичен и расщепляет амидную связь с карбонильной стороны ароматической ь-аминокислоты. Трипсин гидролизует амидные связи, включающие карбоксильные груп- [c.296]


    Тонкие различия в первичной структуре родственных белков часто удается выявить методом отпечатков пальцев . Метод этот состоит в том, что белок подвергают частичному перевариванию с помощью одного или нескольких протеолитических ферментов, а затем разделяют продукты гидролиза и идентифицируют их, пользуясь для этого либо электрофорезом, либо хроматографией на бумаге. На фиг. 32 приведены полученные таким способом отпечатки пальцев , или пептидные карты , нормального и аномального гемоглобинов. Детальное изучение этих пептидных карт показывает, что все пептидные пятна, за исключением одного, идентичны. Таким способом генетически измененный структурный элемент выявляется очень легко, и для установления природы структурного изменения нет надобности устанавливать полную аминокислотную последовательность всей молекулы. Действительно, в ряде случаев весьма определенные указания относительно природы имеющегося замещения можно получить просто исходя из результатов анализа аминокислотного состава соответствующих пептидов, выделенных из двух белков. Но, конечно, однозначные доказательства замены одной аминокислоты на другую получают только после установления аминокислотной последовательности анализируемых пептидов. [c.96]

    Сигнальный пептид, состоящий обычно из 15 — 20 гидрофобных аминокислот, вступает через рибосомный рецепторный белок во взаимодействие с эндоплазматическим ретикулумом и начинает локально-специфический синтез белка. Еще до заверщения синтеза он отщепляется сигнальной пептидазой от остальной цепи. Полипептидная цепь секреторного белка выводится через систему каналов эндоплазматического ретикулума и вслед за этим сворачивается в нативную конформацию. [c.396]

    Если полиамид образован из относительно небольшого числа аминокислот, то используется термин пептиды с префиксом, указывающим число аминокислотных остатков (например, дипептид, трипептид, октапептид). Если полиамид образован из очень большого числа аминокислот, то употребляется термин белок . Молекулярная масса белков составляет 10 —10 . Следует отметить, что нижняя граница этого термина очень неопределенная. [c.296]

    Наиболее известен динитрофенильный метод Сенгера [97]. В этом методе пептид или белок обрабатывается 2,4-динитрофторбензолом (реагент Сенгера) и образующаяся в результате гидролиза ДНФ-аминокислота экстрагируется и идентифицируется. [c.367]


    В сравнении с хроматографическими методами все другие способы очистки белков за последние годы начинают несколько отступать на задний план. Все же следует упомянуть здесь о препаративном электрофорезе, который применяется довольно широко в разных исполнениях. Для фракционирования малых весовых количеств белков разделение смеси белков на зоны ведут в том или ином стабилизирующем наполнителе для ликвидации конвекционного перемешивания. Пригодными наполнителями являются волокна целлюлозы, в частности бумага. Бумажный электрофорез белков похож на разделение аминокислот и пептидов на бумаге, о чем мы уже говорили выше. Другой широко употребительной средой является гель крахмала, который разрезается на кусочки после завершения электрофореза, и из каждого куска элюируется содержащийся в нем белок. [c.131]

    Комбинируя 20 природных аминокислот любыми возможными способами, теоретически можно, получить 20 пептидов, содержащих п остатков, например 400 дипептидов, 8000 трипептидов и т. д. Конечно, Же вое теоретически возможные сочетания встречаются >а практике, так как открытая цепь из N остатков может дать только (N — п- - 1) пептидов с п остатками например, для цепи из 100 остатков могут быть получены 99 дипептидов, 98 трипептидов и т. д. Таким образом, общее число различных веществ (исходный белок, пептиды, аминокислоты), -которые могут находиться в гидролизате, равно (N/2) (N- 1), причем это количество является максимальным, поскольку здесь е принимается во внимание тот факт, что отдельные продукты распада могут быть одинаковыми. Возможность образования одинаковых молекул тем больше, чем короче пептиды. Сложность состава гидролизата [329] очень быстро возрастает от единицы (исходный белок) в начале гидролиза до большой величины, а затем прогрессивно убывает до 20 (20 природных аминокислот). Таким образом, при неспецифическом гидролизе имеются две веские причины стремиться к получению небольших пептидов 1) такие пептиды легче идентифицировать и 2) состав смеси менее сложен. [c.177]

    Кривые титрования показали, что в реакцию с ангидридом вступила примерно треть аминогрупп и что в основном глицин присоединяется в виде полипептида. Это, повидимому, является первым случаем присоединения незамещенных аминокислот или пептидов к нативным белкам с образованием пептидных связей в таких мягких условиях, при которых белок не денатурируется. [c.331]

    Гемоглобин (и миоглобин) пищи, находящийся в ней в денатурированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Последний расщепляется далее пепсином и трипсином с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в желудочно-кишечном тракте, которые свойственны простым белкам. Простетическая группа гемоглобина (оксигемоглобина) — гем — окисляется в гематин. Гематин, так же как и хлорофилл, всасывается в кишечнике очень плохо. Эти пигменты выделяются с калом частью в неизмененном виде, частью в внде различных продуктов, образующихся под влиянием бактерий кишечника. [c.364]

    Ферментативные методы гидролиза особенно ценны благодаря присущей им во многих случаях специфичности. Трипсин, представляющий собой так называемую эндопептидазу, быстро расщепляет пептидные связи лишь в том случае, если карбонильная группа расщепляемой амидной связи принадлежит одной из основных аминокислот — лизину или аргинину. Таким образом, трипсин превращает белок в сравнительно малое число триптических пептидов, которые можно разделить и охарактеризовать. Трипсин расщепляет только денатурированные белки, причем для получения хороших результатов нужно предварительно разорвать дисульфидные мостики. [c.166]

    Переваривание белков представляет собой сложный процесс и совершается в несколько этапов. Начинается этот процесс в желудке под действием фермента пепсина. Дальнейший гидролиз пептидов происходит в тонком кишечнике протеазами поджелудочной железы трипсином, химотропсином, карбоксипептидазами. В переваривании пептидов участвуют также ферменты слизистой кишечника аминопептидаза и дипептидазы. Благодаря последовательному воздействию на белковую молекулу всех ферментов желудочно-кишечного тракта белок распадается на аминокислоты, которые всасываются в кровь. [c.160]

    Методика получения пептидных карт или отпечатков пальцев очень полезна при определении идентичности полипептидных цепей. Согласно этой методике, белок обрабатывают трипсином, который избирательно гидролизует пептидные связи, образованные карбоксильными группами основных аминокислот, аргинина и лизина. Образующаяся смесь пептидов разделяется с помощью хроматографии и электрофореза. Эквивалентный вес полипептидной цепи рассчитывают по количеству аргинина и лизина в белке и числу разных пептидов, получаемых при триптическом гидролизе. Теоретически общее число пептидов должно равняться сумме числа остатков аргинина и лизина плюс один, [c.401]

    Синтез полипептидов был произведен Фишером и его учениками. Абдергальден получил синтетически наиболее сложный пептид, состоящий из 19 остатков аминокислот. Некоторые из полученных полипептидов оказались сходными с полипептидами, образующимися при гидролизе белка. Эти полипептиды давали такие же цветные реак ции, как и белок. [c.217]


    Высокоэффективным методом разделения является сочетание электрофореза на бумаге с обычной хроматографией. При этом сначала через влажную бумагу, на которую нанесена смесь, пропускают ток высокого напряжения, а затем смесь хроматографируют с помощью подходящего растворителя в направлении, перпендикулярном направлению электрофореза. В результате достигается разделение первоначальной смеси в двух измерениях. Применение такого метода к продуктам ферментативного расщепления белков позволяет получить двухмерную картину, которую называют пептидной картой. Каждый белок дает характерную для него при каждом конкретном способе расщепления картину. Локализацию отдельных компонентов во многих случаях определяют с помощью специфических красителей. При определении аминокислот и пептидов в качестве такого красителя используют, например, нингидрин. Если производится элюция адсорбированных компонентов, то удобнее всего устанавливать их присутствие в элюате спектрофотометрически. Вероятно, наиболее тонким методом разделения белков следует считать иммуноэлектрофорез, при котором эффект достигается за счет использования различий в двух свойствах электрофоретической подвижности и иммунологической специфичности. [c.220]

    Чтобы удалить белок из плазмы крови, к последней добавляют пикрат [184] или лучше (чтобы избежать потери основных аминокислот) сульфосалициловую кислоту [185], смесь фильтруют, не содержащий белков фильтрат очищают методом катионообменной хроматографии на колонке (50X8 мм) с дауэксом AG50W-X8. Методики очистки образцов мочи перед разделением и количественным определением в нем аминокислот и пептидов описаны в работах [2, 182]. [c.69]

    Практически все бактерии могут использовать аммоний как главный источник азота и эти бактерии требуют только одну или несколько аминокислот. Поскольку в обычных условиях большинство переваримого протеина превращается в рубце в микробный белок, наличие важнейших аминокислот в рационе жвачных имеет меньшее значение, чем для моногастричпых животных. Способность бактерий синтезировать аминокислоты, используя азот аммиака, ликвидирует потребность жвачных в аминокислотах и большая часть азота в их рационах может быть удовлетворена мочевиной или другими небелковыми соединениями. Интересным является факт, что значительная часть бактерий рубца не может эффективно использовать аминокислоты или пептиды, по требует аммоний как источник азота. Некоторые другие используют пептиды или аммиак, но ие используют аминокислот (Bryant, 1970). [c.196]

    Используя технику клонирования ДНК [599] и анализа нуклеотидных последовательностей [600], Наканнши и сотр. foOl] установили нуклеотидную последовательность мРНК-предшественника. Нумерация аминокислотной последовательности положительная справа от N-концевой аминокислоты АКТГ, в левую сторону отсчет идет со знаком минус. Белок-предшественник содержит 8 пар основных аминокислот и одну двойную пару -Lys-Lys-Arg-Arg. В этих местах происходит ферментативное расщепление белка с образованием различных пептидов. /3-Липотропин образует С-концевую область и, вероятно, отщепляется непосредственно от предшественника. Общая схема ферментативного расщепления и вид фрагментации к настоящему времени еще не установлены. В отличие от известных последовательностей /3-липотропинов свиньи и овцы /3-липотропин теленка содержит между 35 и 36 аминокислотными остатками два дополнительных (-Ala-Glu-) этим объясняются различные длины цепей липотропинов (см. схему). Анализ на ЭВМ аминокислотной последовательности отрицательной части предшественника дал интересный результат между позициями —55 и —44 найдена аминокислотная последовательность -Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asn-Arg-Phe-Gly-, имеющая большое сходство с а- н /3-МСГ. Так как в области аминокислотной последовательности предшественника от —111 до —105 присутствует еще один участок, имеющий структурное сходство с МСГ-пептидами, предполагается существование серии дупликаций гена, аналогично имеющей место в случае иммуноглобулинов. О [c.242]

    Пептидные связи по обеим сторонам остатка аспарагиновой кислоты в молекуле белка особенно легко гидролизуются разбавленными кислотами [233], приче степень гидролиза зависит от pH раствора, а не от концентрации используемой кислоты [32, 189]. Так, из альбумина сыворотки крови быка за 18 час при 100° и pH 2,14 выделяется 44% остатков аспарагиновой кислоты в виде аминокислоты, в то время как при pH 3,15 освобождается всего 26% остатков кислоты [189]. При экстракции эластина 0,25 М щавелевой кислотой при 100° был получен растворимый белок единственной выделенной свободной аминокислотой оказалась аспарагиновая кислота [235]. Однако присутствие в продукте реакции пептидов с короткой цепью и результаты определения концевых груМп [24, 234] указывают на значительную степень гидролиза и других пептидных связей. Исследования, проведенные на модельных соединениях [73], позволили сделать вывод о лабильности связей остатков серина и треонина. Применение описанного выше метода гидролиза для исследования цепи А окисленного [c.226]

    Протамины и гистоны. Данная группа белков отличается рядом характерных физико-химических свойств, своеобразием аминокислотного состава и представлена в основном белками с небольшой молекулярной массой. Протамины обладают выраженными основными свойствами, обусловленными наличием в их составе от 60 до 85% аргинина. Так, сальмин, выделенный из молок семги, состоит на 85% из аргинина. Высоким содержанием аргинина отличается другой хорошо изученный белок—клу-пеин, выделенный из молок сельди из 30 аминокислот в нем на долю аргинина приходится 21 остаток. Расшифрована первичная структура клу-пеина. Протамины хорошо растворимы в воде, изоэлектрическая точка их водных растворов находится в щелочной среде. По современным представлениям, протамины скорее всего являются пептидами, а не белками, поскольку их молекулярная масса не превышает 5000. Они составляют белковый компонент в структуре ряда сложных белков. [c.73]

    Последовательность аминокислотных остатков в полипептид-,ной цепи называется ее первичной структурой. Определение пер.-вичной структуры производится путем частичного гидролиза белка с помощью специфических протеаз, катализирующих расщепление пептидной связи лишь между определенными остатками. Так, трипсин атакует лишь те пептидные связи, которые образованы СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь коротких полипептидных цепей, олигомеров. Такие короткие цепи называются пептидами. Их исследование производится посредством химических и физико-химических методов (хроматография, масс-спектроскопия). Воздействуя другим ферментом, можно разрезать белок по другим связям, получить смесь других пептидов. N- и С-конце-вые остатки белка (см. стр. 68) определяются в результате их химической модификации, предшествующей частичному гидролизу. Зная строение пептидов, полученных при специфическом расщеплении различными ферментами, можно установить первичную структуру белка. Допустим, что белковая цепь имеет структуру [c.73]

    Исследуемый белок инкубируют в присутствии карбоксипеп-тидазы при соответствующих условиях. В ходе инкубации из смеси отбирают пробы, в которых определяют свободные аминокислоты и таким образом устанавливают С-концевую последовательность изучаемого белка или пептида. [c.291]

    Некоторые авторы разделяют протеолитические ферменты на протеиназы, расщепляющие белок до пептидов, и пептидазы, расщепляющие белок до аминокислот. Считают, что протеиназы более активны, чем пептидазы, и поэтому гидролиз белков в асновном доходит до стадии полипептидов, а не аминокислот. [c.133]

    Биосинтез. У животных и человека инсулин синтезируется в р-клетках островков Лангерганса. Гены, кодируюшие этот белок у человека, локализованы в коротком плече 11-й хромосомы. Зрелая инсулиновая мРНК состоит из 330 нуклеотидов, что соответствует 110 аминокислотным остаткам. Именно такое их количество содержит предшественник инсулина — препроинсулин. Он состоит из одной полипептидной цепи, на Л -конце которой находится сигнальный пептид (24 аминокислоты), а между А- и В-цепями локализован С-пептид, содержащий 35 аминокислотньгх остатков. [c.165]

    Уменьшение количеств белков и пептидов, необходимых для анализа их структуры, является одной из центральных проблем, стоящих перед исследователями. С целью ее решения ведется поиск новых методов изучения структуры, в частности более чувствительных способов идентификации производных аминокислот (см. с. 61). Один из перспективных подходов заключается в широком использовании радиоактивных методов анализа. В ряде лабораторий при деградации пептидов в секвенаторе применяется радиоактивный или С-ФИТ1Д. Можно вводить радиоактивную метку непосредственно в анализируемый белок. Для многих белков это достигается добавлением радиоактивно меченных аминокислот непосредственно в питательную среду, на которой выращивается культура, являющаяся источником исследуемого белка. Таким же путем оказывается возможным радиоактивно метить белок избирательно по определенным аминокислотным остаткам. Если белок, радиоактивно меченный, например, по остаткам лейцина, анализировать с помощью секвенатора, то простое измерение радиоактивности экстрактов, содержащих анилинотиазолиноны, позволяет безошибочно определить, в каких положениях полипептидной цепи в N-концевой области белка расположены остатки лейцина (рис. 31). Аналогичным образом можно определить положение и других аминокислотных остатков. Такой прием используется для анализа N-koh-цевой последовательности предшественников белков, доступных лишь в ничтожно малых количествах. Для исследования полной структуры он, однако, не применяется из-за дороговизны и трудоемкости. [c.79]

    Пептиды наряду с аминокислотами содержатся в биологических материалах (см., например, [120, 121]), большей частью в малых концентрациях и часто в сопряженной форме (фосфопептиды, пептидилнуклеотиды, глюкопептиды, липопептиды, комплексы пептид — белок). Низшие свободные пептиды при экстракции сопровождают фракцию аминокислот. Отделение их от аминокислот весьма затруднительно. [c.408]

    ПРОИНСУЛИН, белок — предшественник инсулина. Молекула включает 81—86 аминокислотных остатков (в зависимости от вида животного) мол. м. 9000. На N-конце молекулы располагается В-цепь инсулина, на С-конце — А-цепь. Цепи инсулина соединены т.н. С-пептидом, построенным из 27—33 аминокислотных остатков. Общая схема строения молекулы НзМ—В-цепь—Арг—Арг—С-пеп-тид—Лиз—Лиз—А-цепь—СООН (буквенные обозначения см. в ст. а-Аминокислоты). Видовые различия в П. наиб, выражены на участке С-пептида. П. обеспечивает правильное замыкание дисульфидных связей при образовании двухцепочечной структуры инсулипа. Превращ. П.- в инсулин в 0-клетках островков поджелудочной железы осуществляется специфическими ферментами, при этом от П. отделяется С-пептид. [c.480]

    Гемоглобин (и миоглобин) пищи, находящийся в ней в дена-, турированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Последний расщепляется далее пепсином и трипси- J ном с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в желудочно-кишечном тракте, которые свойственны простым белкам. Простетическая группа гемоглобина (оксигемоглобина) — гем — окисляется в гематин.,  [c.385]

    После того как будет определена последовательность аминокислот во всех продуктах деградации и в соответствующем числе перекрывающихся пептидов, полную последовательность нативной полипентидной цепи можно считать установленной. (Ниже мы это покажем на конкретном примере.) Последнее, что требуется сделать, — это установить положение дисульфидных мостиков. С этой целью подвергают ферментативному расщеплению белок, дисульфидные связи которого не нарушены. Обычно небольшого числа дополнительных анализов (по установлению последовательности) оказывается достаточно для полной локализации групп, участвующих в образовании дисульфидных связей. [c.91]

    Японский химик Акабори (1952) предложил способ определения С-концевого (карбоксильного) остатка аминокислоты. Пептид или белок нагревают 10 ч с безводным гидразином при 105°С. При этом все аминокислоты, кроме С-концевой, превращаются в соответствующие гидразиды, которые отделяют от С-концевой аминокислоты в виде бензилиденовых производных. Применение метода иллюстрируется на примере анализа трипептида  [c.676]


Смотреть страницы где упоминается термин Аминокислоты белков. Пептиды: [c.142]    [c.367]    [c.253]    [c.198]    [c.253]    [c.393]    [c.203]    [c.254]    [c.25]    [c.231]    [c.529]    [c.39]    [c.274]    [c.469]    [c.81]    [c.246]    [c.271]    [c.378]    [c.57]    [c.107]    [c.270]    [c.277]   
Смотреть главы в:

Органическая химия -> Аминокислоты белков. Пептиды

Органическая химия -> Аминокислоты белков. Пептиды




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты белков

Анализ аминокислот, пептидов, белков и ферментов

Определение С-концевых аминокислот с помощью гидразинолиза Сульфгидрильные группы белков и пептидов

Определение иммобилизованных белков, пептидов, аминокислот, нуклеотидов, углеводов и других веществ после их освобождения с помощью кислотного, щелочного нли ферментативного гидролиза



© 2024 chem21.info Реклама на сайте