Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярная ковалентность. Полярные молекулы

    Неполярная и полярная ковалентная связь. Если двухатомная молекула состоит из атомов одного элемента как, например, молекулы Н2, N2, С12 и т. п., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную [c.123]

    Химическая связь в молекулах галогеноводородов—полярная ковалентная общая электронная пара смещена к атому галогена, [c.359]


    ПОЛЯРНАЯ КОВАЛЕНТНОСТЬ. ПОЛЯРНЫЕ МОЛЕКУЛЫ [c.55]

    Смещение общего электронного облака при образовании полярной ковалентной связи приводит к тому, что средняя плотность отрицательного электрического заряда оказывается выше вблизи более электроотрицательного атома и ниже —вблизи менее электроотрицательного. В результате первый атом приобретает избыточный отрицательный, а второй — избыточный положительный заряд эти заряды принято называть эффективными за рядами атомов в молекуле. [c.125]

    В других органических соединениях оч элементов определяются так же, как в ковалентных полярных молекулах, т. е. на основе положений 5 и 6. [c.9]

    При изучении химической связи формируются понятия о ковалентной полярной и неполярной связи, о а- и я-связях, о ионной связи и поведении ионов в растворах, а также о металлической связи и строении молекул органических веществ. Особое внимание уделяется при этом единой электронной природе любой химической связи, образованной частичным перекрыванием электронных облаков. Именно поэтому изучение начинается с рассмотрения ковалентной неполярной связи, затем полярной и ионной — как крайнего случая полярной связи. Опорным при изучении полярной связи является понятие об электроотрицательности элементов, которое дает ключ к пониманию причин смещения электронных пар. [c.231]

    Электролиты по виду их химической связи подразделяются на две группы а) соединения с ионной связью, к ним относятся соли и некоторые основания б) соединения с полярной ковалентной связью, молекулы кото-Рис. 18. Установка для образуют ионы под действием диполей [c.68]

    Возможность и степень распада на ионы определяется природой растворенного вещества и природой растворителя. Распад на ионы (вязан либо с явлением диссоциации (разъединения), либо с явле-пием ионизации (образования ионов). Так, пр,и растворении ионных соединений (поскольку они уже состоят из Ионов) имеет место диссоциация. Роль растворителя в этом случае заключается в создании условий для разъединения ионов противоположного знака и в препятствовании процессу молизации. Диссоциация ионных соединений протекает тем легче, чем полярнее молекулы растворителя. При распаде ковалентных соединений на ионы происходит гетеролитиче-ский разрыв связи, т. е. ионизация. [c.128]

    Если связь между атомом комплексообразователя н лигандами преимущественно ковалентная, то прочность ее увеличивается при соединении с лигандами, имеющими свободные разрыхляющие молекулярные я-орбиталп, или с лигандами, способными отдавать электронные пары на свободные rf-орбитали металлов. Так, прочные комплексы образуют переходные металлы VU, VIII и 1 групп, т. е. d-элементы середины больших периодов, лигандами являются анионы или полярные молекулы, склонные-к образованию донорно-акцепторной связи. В ряду [c.260]


    Следует, однако, обратить внимание на то, что только молекулы первых трех соединений не содержат полярных связей. Молекулы же последних двух соединений содержат полярные ковалентные [c.63]

    Полярность ковалентной связи. В молекуле, состоящей из двух одинаковых атомов, электронное облако расположено симметрично относительно обоих ядер. В случае же двух различных атомов электронная плотность около одного из них бывает большей, чем около другого. Тогда в молекулярном состоянии участвуют с разным весом собственные функции валентных электронов атома А (ф ) и атома ГЗ (ф )  [c.51]

    Следует помнить, что нет отдельной ионной или ковалентной связи, есть ионная составляющая химической связи. Степень ион-ности межатомной связи определяет возможность образования молекул в данных условиях, а также то, ограничится ли их взаимодействие при отвердевании вещества только установлением ван-дер-ваальсовских связей между ними, или же молекулы перестанут существовать как самостоятельные структурные единицы. Действительно, появление даже слабой ионной составляющей межатомной связи часто увеличивает ее прочность как раз настолько, насколько это необходимо, чтобы образующаяся молекула могла выстоять под ударами теплового движения, разбрасывающего атомы в разные стороны, и чтобы они не соединились друг с другом в каком-нибудь другом порядке. Полярные молекулы, в которых преобладает ковалентная составляющая межатомной связи (такие, как молекулы воды, толуола), при переходе вещества в твердое состояние сохраняют свою целостность и служат структурными единицами, из которых строятся молекулярные кристаллы. При этом они вступают в межмолекулярное электростатическое взаимодействие друг с другом, от которого в значительной мере зависят строение и многие свойства соответствующего твердого вещества, в частности температура плавления, растворимость. [c.83]

    MOM высоко полярной ковалентной связью (например, О — Н). В этом случае водород обладает довольно высокой протонной подвижностью, в результате чего возникает связь особого типа (Н-связь), энергия которой составляет всего 12,5—21 кДж/моль. Возникновение такой связи между молекулами, например воды, можно изобразить в виде схемы  [c.22]

    Молекулярные вещества (мономерные ковалентные соединения) построены из молекул, атомы которых связаны более или менее полярными ковалентными связями. Объединение молекул в жидком или твердом состоянии осуществляется за счет межмолекулярных сил. [c.346]

    В противоположность прочным ковалентным связям между атомами в молекуле вандерваальсовы силы, действующие между молекулами, относительно слабые (разд. 6.3.7). В зависимости от полярности молекул можно подразделить молекулярные вещества на неполярные и полярные. [c.350]

    Диссоциация ковалентных полярных молекул, например НО, в водном полярном растворителе сопровождается диполь-диполь-ным взаимодействием, поляризацией и деформацией связей, доиор-но-акцепториым взаимодействием. В итоге происходит гетеролити-ческий разрыв связей (Н С1- .-Н + +С1 ) и образование гидратированных ионов (H -mH O и О- /гН О). [c.208]

    Дипольный момент молекул. Представим себе, что можно найти центры тяжести отрицательных и положительных частей молекулы. Тогда условно все вещества можно разбить на две группы. Одну группу составляют те, в молекулах которых оба центра тяжести совпадают. Такие молекулы называют неполярными. К iiHM относятся все ковалентные двухатомные молекулы вида Al, а также молекулы, состоящие из трех и более атомов, имеющие высохосимметричное строение, например СОз, Sj, U, СбНб. Во вторую группу входят все вещества, у которых центры тяжести зарядов в молекуле не совпадают, молекулы которых характеризуются электрической асимметрией. Эти молекулы называют полярными. К ним относятся молекулы вида АВ, в которых элементы А и В имеют различную электроотрицательность, и многие более сложные молекулы. Систему из двух разноименных электрических зарядов, равных по абсолютной величине, называют диполем. [c.74]

    Следует обратить внимание на то, что если исключить молекулы, состоящие из одинаковых атомов (а их сравнительно немного), то все остальные ковалентные молекулы характеризуются некоторым (большим или меньшим) смещением электронных пар к одному из атолюв, так как они образованы атомами, отличающимися по электроотрицательности. Такая связь является полярной ковалентной. К молекулам о полярной связью относятся, например, молекулы F4, H3 I, Полярную ковалентную связь обозначают или сдвигом соответствующих пар точек, или стрелкой С1 F. Полярностью связи [c.136]

    Полярностью могут обладать молекулы веществ, находящихся в любом агрегатном состоянии. Полярность молекул может быть постоянной, обусловленной их структурными особенностями (как у воды) такие молекулы называют жесткими диполями. В ряде случаев деформация орбит электрорюв и полярность молекул нозншоет под влиянием внешних воздействий (электрических и магнитных полей и др.) и носит временный характер такие диполи называют индуцированными, обусловленная ковалентными связями, чем в случае ионных связей. [c.26]


    Выдвинутые в этой главе аргументы преследовали цель показать, что расширенная концепция окисления-восстановления Нельсона-Фалька-Штиглица оправдьшается хотя бы той практической пользой, которую она представляет для толкования химических реакций. Существенно отметить, что практическое приложение ее в свою очередь основывается на допущении, что направление реакций гидролиза однозначно определяется полярностью гидролизуемой связи. Однако прежде чем полностью согласиться с этой концепцией, следует проанализировать ее подробнее. Так как мы определили окисление в терминах полярности, то необходимо иметь надежные средства для измерения последней. Из четырех методов, предложенных Абегом, первый, относящийся к ионам, вполне надежен. Третий базируется на относительном положении элементов в периодической системе. Он не может быть признан надежным, если только Нойес и Штиглиц правы в вопросе о существовании положительного галоида. Кроме того, накопление в молекуле отрицательных групп может настолько сильно изменять сродство к электронам у атомов, находящихся под их влиянием, что возможность встретиться с дальнейшими исключениями кажется естественной. Четвертое правило, основывающееся на том, что число положительных валентностей атома остается постоянным, тогда как число отрицательных может меняться, находит себе в органической химии лишь очень ограниченное применение. Таким образом, разрешение вопросов о характере полярности ковалентных связей почти целиком падает на долю второго правила, основанного, как зоке было указано, на исследовании того, в каком направлении идут реакции гидролиза. Основное допущение, которое было положено в основу применения этого правила, состоит в том, что при гидролизе ковалентная связь сначала ионизуется, например Х+У - -Х+- -У", а затем получающиеся таким образом ионы соединяются соответственно с ионами воды, или, по крайней мере, в допущении, что молекулы реагируют как если бы механизм был именно таким. [c.69]

    Следует обратить внимание на то, что если исключить молекулы, состоящие из одинаковых атомов (а их сравнительно, немного), то все остальные ковалентные молекулы характеризуются некоторым (большим или меньшим) смещением электронных пар к одному из атомов, так как они образованы атомами, отличающимися по электроотрицательности. Такая связь является полярной ковалентной. К молекулам с полярной связью относятся, например, молекулы Ср4 и СНзС1. Полярную ковалентную связь удобнее отметить не сдвигом соответствующих шар точек, а стрелкой С1->-р. Полярностью связи ---Н объясняются многие свойства воды, в частности электролитическая диссоциация растворенных в ней веществ. [c.143]

    Таким образом, донорно-акцепторная связь по своей природе является ковалентной связью с той или иной степенью полярности. Название же донорно-акцепторная связь указывает лишь на механизм образования связи. Примером такой связи служит связь в комплексе ВРз N1-13, где общая связывающая МО образуется за счет комбинации МО неподеленной пары молекулы NHз (донор) и низколежащей свободной МО молекулы ЕРд (акцептор). К допорно-акцепторным соединениям относятся соли тетрацианопарахинодиметана и тетратиофуль-валена, так называемые органические металлы , обладающие очень высокой металлической проводимостью. [c.89]

    Процесс образования ионов при растворении вещества в воде можно представить себе следующим образом. Как известно, различают два вида химической связи — электро-валентную (ионную) и ковалентную. В первом случае связь между атомами в молекуле осуществляется путем перескакивания валентных электронов с наружной оболочки одного атома на наружную оболочку другого атома. Образующиеся, таким образом, ионы при переходе вещества в твердое состояние удерживаются в кристаллической решетке электростатическими силовыми полями. Для отрыва ионов друг от друга необходимо затратить работу. Работа эта, называемая энергией решетки, совершается полярными молекулами растворится, находящимися в тепловом движении и вступающими зате1м во взаимодействие с ионами растворяемого вещества (сольватация, гидратация ионов). Таким образом ионы в растворах являются сложными частичками, внутри которых находится ион, окруженный полярными молекулами растворителя. [c.20]

    Растворимость молекулярных твердых тел зависит от природы образующих их молекул и прочности связи между молекулами. Полярные молекулы ряда галогенидов, образующие молекулярные решетки (например, Alj lg, Fe lg, H l), растворяются в воде и при этом ионизируются благодаря сильному взаимодействию возникающих ионов с водою (вследствие ковалентной и электростатической гидратации). Неполярные молекулярные вещества не могут растворяться в воде (например, твердые углеводороды), но они могут растворяться в неполярных органических растворителях, если энергия взаимодействия между молекулами в кристаллической решетке не слишком велика. Если же энергия взаимодействия между молекулами в решетке велика, то растворитель все же может проникать в промежутки решетки между молекулами, не разрушая ее полностью (явление набухания). Так набухает желатина в воде и водных растворах. Некоторые плохо растворимые в воде гидроокиси [М (ОН)2,А1(ОН)з и др.] обладают так называемыми слоистыми решетками, промежуточными между ионными и молекулярными. В этих решетках катионы и анионы расположены послойно, причем слой катионов окружен с двух сторон слоями анионов и в этих решетках возможно набухание — проникновение растворителя (конечно, полярного, поскольку гидроокиси полярны) в промежутки между слоями. Так образуются сильно оводненные осадки. [c.53]

    Разрыв ковалентной связи в молекулах газа обычно приводит к образованию двух нейтральных радикалов. Такие реакции называются атомными или гомолитическими. Разрыв ковалентной связи в молекуле может привести и к образованию двух противоположно заряженных ионов. Такие процессы называются гетвролитическими и почти не наблюдаются в газах, но очень характерны для растворов. Объясняется это тем, что гетеро-литический распад в газах требует затраты большой энергии на преодоление взаимного электростатического притяжения ионов. В растворах же большие диэлектрические проницаемости многих растворителей заметно понижают электростатическое притяжение ионов, поэтому энергия гетеролитического разрыва ковалентной связи может стать ниже энергии гомоли-тического разрыва. Кроме того, гетеролитическому распаду способствует поляризация диссоциирующей связи под действием электрических полей полярных молекул растворителя. [c.84]

    Неообходимо отметить, что образование чисто ионных связей осуществляется в сравнительно ограниченном числе случаен. Подавляющее большинство молекул химических соединений содержит связи, имеющие промежуточный характер и называемые ковалентно-полярными или просто полярными. [c.48]

    В двухатомных молекулах тина АВ, например НС1, СО, N0 и т. п., связи имеьзт ковалентно-полярный характер и сами молекулы являются полярными. Для молекул подобного тина понятия полярности связи и молекулы являются однозначными и их моменты электрических диполей численно совпадают. [c.52]

    На температуры плавления и кипения также оказывают влияние другие силы межмолекулярного взаимодействияь связанные с полярностью молекул. Если два атома связаны друг с другом ковалентной связью в ре- [c.24]

    Таким образом, полярные молекулы обладают диполями связей, векторная сумма которых дает отличный от нуля дипольный момент. Неполярные. молекулы имеют либо чисто ковалентные связи (равномерное обобществление связывающих JJi к гроНишХ лиоо дипсли Солзе", кс [c.582]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Координационными или комплексными называют соединения, содержащие центральный атом или ион и группу молекул или ионов, его окружающих и связанных с ним (лигандов). Число лигандов, связанных с центральным атомом (ионом), называют координационным числом иона. Оно зависит как от электронной структуры, так и от соотношения между радиусами центрального атома (иона) и лигандов. Координационное число центрального атома (иона) обычно превышает его валентность, понимаемую как формальный положительный заряд на атоме. Высокая устойчивость многих комплексных соединений указываает, что химическая связь в них не отличается по своей природе от химической связи в обычных ионных или ковалентных соединениях. В большинстве координационных соединений центром является ион переходного металла (Т , Со , Сг " и др.), а лигандами — ионы или полярные молекулы (обладающие к тому же неподеленной парой электронов.) Именно поэтому электростатические представления легли в основу теории комплексных соединений, так называемой теории кристаллического поля, учитывающей также квантовомеханические особенности строения электронной оболочки центрального иона (Бете, Ван Флек). [c.120]

    Электрическая полярность молекул. Выше ( 7) уже было указано, что при образовании чисто ковалентной связи электронное облако молекулы, возникающее в результате перекрывания электронны.х облаков одинаковых ато мов, занимает симметричное положение между остовами соединяющих атомов, В этих случаях и сами молекулы электросимметричны, т. е. центры ироявлення положительных зарядов ядер и отрицательных зарядов электронов совпадают в одной точке поэтому эти молекулы называют [c.61]

    В молекуле аммиака атом азота соединен с тремя атомами водорода тремя полярными ковалентными связями. Ма образование этих связей атом азота отдал три имеющихся на его наружном уровне непарных электрона, причем три образовавшиеся электронные najjbi оказались оттянутыми к атому азота. Однако атом азо- [c.65]

    Простые кислоты — соединения водорода с окислительными элементами. Связь между атомами в молекулах этих соединений полярная ковалентная, причем атом водорода поляризован положительно. Простые кислоты характеризуются кристал.чн-ческими решетками молекулярного тина и отсутствием электрической проводимости в жидком состоянии. В определенных условиях молекулы простых кислот могут быть донорами протонов, и эта (]JylIкцпя, собственпо, и является характерной для кислот. [c.121]

    В молекуле СнС1з связи полярно-ковалентны. При растворении в воде ее молекулы внедряются между атомами меди н хлора, а результате чего происходит ионизация с образованием обычных хлорид-ионов и тетрааквамедь(П)-иона. Подобно этому идет взаимодействие с водой и галидов других металлов с ковалентными связями. [c.133]

    Необычные свойства воды объясняются ее строением. Молекула воды нелинейна — угол между связями Н—О—Н равен 104°27. Связи Н—О ковалентны, однако они полярны, т. е. некоторый положительный заряд несут атомы водорода, а отрицательный — атом кислорода. Вследствие этого связанный атом кислорода способен притягивать атом водорода соседней молекулы с образованием водородной связи, что существенно повышает общую энергию связи. Таким образом, молекулы в воде ассоциированы. В кристаллах льда водородные связи еще сильнее. В силу высокой полярности молекул Н2О вода является растворителем других полярных соединений, не имея себе равных. [c.101]

    Дополнительные силы притяжения между молекулами полярных ковалентных веществ могут возникать за счет образования так называемой мостиковой водородной связи. При этом через атом водорода происходит связывание двух атомов с вы- Сокой электроотрицательностью, таких, как, например, Р, О и N. Связь атома водорода этого водородного мостика с одним из двух атомов (которые могут быть одинаковыми или различными) обычно прочнее. Схематически это обозначается следующим образом X—Н---Х. В некоторых случаях, например для тидродифторида калия КНРг, доказана симметричность водородных связей в водородных мостиках. [c.352]

    Первой стадией процесса растворения вещества, состоящего из полярных молекул, является поляризация ковалентной связи растворителем, что, вообще говоря, приводит к гетеролити-ческому расщеплению на положительную и отрицательную частицы. Многочисленными примерами можно доказать, что способность растворителя расщеплять вещество на ионы в первую очередь определяется его донорным и акцепторным числами, а не диэлектрической проницаемостью ел Даже растворитель с большой диэлектрической проницаемостью не способен гете-ролитически расщепить связи растворенной частицы, если он не имеет достаточной координирующей способности. Так, например, хлорная кислота в серной кислоте (ег = 80) не образует ионов, в то время как в водном растворе (ег=78,5) О—Н-связь в молекуле НСЮ4 полностью разрывается. [c.450]

    Полярные ковалентные связи в молекулах IFs и ВгРз очень прочные, а свободные электронные пары расположены достаточно симметрично. С термодинамической точки зрения диспропорционирование, несмотря на отрицательные значения АС°обр для IF и ВгР, объясняется тем, что значения AG°o6p для IP5 и ВгРз еще более отрицательны. Аналогичные соотношения выполняются и для энергий диссоциации (рис. В.27). Молекула ВгР устойчивее, чем молекула IF, поскольку в первой возможно участие ря— ге-связывания. Сравнение устойчивости различных межгалогенных соединений типа АВ, АВз, ABs и IF7 между собой, а также с неполярными молекулярными веществами типа А—А и В—В можно провести, используя рис. В.27. [c.501]


Смотреть страницы где упоминается термин Полярная ковалентность. Полярные молекулы: [c.89]    [c.619]    [c.134]    [c.92]    [c.49]    [c.66]    [c.67]    [c.20]    [c.161]   
Смотреть главы в:

Молекулярные основы жизни -> Полярная ковалентность. Полярные молекулы




ПОИСК





Смотрите так же термины и статьи:

Ионизация ковалентной молекулы в полярном растворителе, энергетическая диаграмма

Ковалентность

Полярность молекул

Полярные молекулы

ковалентная полярная



© 2025 chem21.info Реклама на сайте